Advertisement

Mechanical Properties of Fiber-Reinforced YBa2Cu3Ox and Bi2Sr2CaCu2Ox Bars

  • K. C. Goretta
  • L. J. Martin
  • D. Singh
  • R. B. Poeppel
  • Nan Chen
  • C.-Y. Chu
  • J. L. Routbort
  • R. A. Gleixner
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

Bars of YBa2Cu3Ox (123) and Bi2Sr2CaCu2Ox (2212) were examined at room temperature for strength in four—point bending and fracture toughness. The 123 was reinforced with 15 vol.% Y2BaCuO5 (211) fibers and processed to 90–91% density by cold pressing and sintering. The 2212 was reinforced with 15 vol.% 2212 fibers and processed to ≈90% density by sinter forging. The 123/211 composites had a fracture toughness of 1.9 MPa(m)0.5, which is 20–30% higher than that of corresponding monoliths, but exhibited no improvement in strength. The strength and fracture toughness of the 2212/2212 composites were 102 MPa and 2.7 MPa(m)0.5, respectively, which were slight improvements over those of the monoliths. Transport critical current densities at 77 K were only slightly affected by the fiber additions.

Keywords

Fracture Toughness Critical Current Density Fiber Addition Scanning Electron Microscopy Photomicrograph Transport Critical Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alford, N.N., Birchall, J.D., and Kendall, K., 1986, Engineering ceramics — the process problem, Mater. Sci. Technol. 2: 329.Google Scholar
  2. Alford, N.McN., Button, T.W., and Birchall, J.D., 1990, Processing, properties and devices in high-Tc superconductors, Supercond. Sci. Technol. 3: 1.CrossRefGoogle Scholar
  3. Balachandran, U., Poeppel, R.B., Emerson, J.E., Johnson, S.A., Lanagan, M.T., Youngdahl, C.A., Shi, D., Goretta, K.C., and Eror, N.G., 1989, Synthesis of phase-pure orthorhombic YBa2Cu3Or under low oxygen pressure, Mater. Lett. 8: 454.CrossRefGoogle Scholar
  4. Bloom, I., Frommelt, J.R., Hash, M.C., Lanagan, M.T., Wu, C.-T., and Goretta, K.C., 1991, Mater. Res. Bull. 26: 1269.CrossRefGoogle Scholar
  5. Brown, Jr., W.F., and Srawley, J.E., 1967, “Plane Strain Crack Toughness Testing of High Strength Metallic Materials (ASTM STP 410),” ASTM, Philadelphia.Google Scholar
  6. Chen, N., Biondo, A.C., Dorns, S.E., Goretta, K.C., Lanagan, M.T., Youngdahl, C.A., and Poeppel, R.B., 1993, Sinter-forged (Bi,Pb)2Sr2Ca2Cu3Ox superconductors, 1993, Supercond. Sci. Technol. 6:in press.Google Scholar
  7. Chu, C.-Y., Routbort, J.L., Chen, N., Biondo, AC., Kupperman, D.S., and Goretta, KC., 1992, Mechanical properties and texture of dense polycrystalline Bi2Sr2CaCu2Ox, Supercond. Sci. Technol. 5: 306.CrossRefGoogle Scholar
  8. De Arellano-López, AR., Goretta, K.C., Routbort, J.L., Miller, D.J., and Dominguez-Rodriguez, A., 1991, High-temperature compression of polycrystalline Y2BaCuO5, Ceramica Acta 3: 5.Google Scholar
  9. Evans, AG., 1989, The mechanical performance of fiber-reinforced ceramic matrix composites, Mater. Sci. Eng. A107: 227.CrossRefGoogle Scholar
  10. Evans, A.G., and Charles, E.A, 1976, Fracture toughness determinations by indentation, J. Am. Ceram. Soc. 59: 371.CrossRefGoogle Scholar
  11. Fujimoto, H., Murakami, M., Oyama, T., Shiohara, Y., Koshizuka, N., and Tanaka, S., 1990, Fracture toughness of YBaCuO prepared by MPMG process, Jpn. J. Appl. Phys. 29: L1793.CrossRefGoogle Scholar
  12. Goretta, KC., Chen, N., Lanagan, M.T., Wu, W., Singh,J.P., Olson, R.A., Routbort, J.L., and Poeppel, R.B., 1993a, Sintering and annealing of bulk high-Tc superconductors (Y-Ba-Cu-O) to effective properties, Ind. Heating,February issue, p. 40.Google Scholar
  13. Goretta, KC., Kullberg, M.L., Bär, D., Risch, G.A., and Routbort, J.L., 1991, Fracture toughness of YBa2Cu3Ox containing Y2BaCuO6 and ZrO2, Supercond. Sci. Technol. 4: 544.CrossRefGoogle Scholar
  14. Goretta, K.C., Loomans, M.E., Martin, L.J., Joo, J., Poeppel, R.B., and Chen, N., 1993b, Fracture of dense, textured Bi2Sr2CaCu2Ox, Supercond. Sci. Technol. 6: 282.CrossRefGoogle Scholar
  15. Goyal, A., Funkenbusch, P.D., Kroeger, D.M., and Burns, S.J., 1992, Anisotropic hardness and fracture toughness of highly aligned YBa2Cu3O7, J. Appl. Phys. 71: 2363.CrossRefGoogle Scholar
  16. Hinks, D.G., Soderholm, L., Capone II, D.W., Jorgensen, J.D., Schuller, I.K, Segre, C., Mang, K., and Grace, J.D., 1987, Phase diagram and superconductivity in the Y-Ba-Cu-O system, Appl. Phys. Lett. 50: 1688.Google Scholar
  17. Holesinger, T.G., Miller, D.J., Chumbley, L.S., Kramer, M.J., and Dennis, KW., 1992, Characterization of the phase relations and the solid solution range of the Bi2Sr2CaCu2Ox superconductor, Physica C 202: 109.CrossRefGoogle Scholar
  18. Imam, M.A., Singh, A.K., Sadananda, K, and Osofsky, M., 1989, Preparation of dense bulk high Tc superconducting materials using hot isostatic pressing, IEEE Trans. Magn. 25: 2010.Google Scholar
  19. Jin, S. and Graebner, J.E., 1991, Processing and fabrication techniques for bulk high-Tc superconductors: a critical review, Mater. Sci. Eng. B7: 243.CrossRefGoogle Scholar
  20. Johnson, Jr., D.W., and Rhodes, W.W., 1989, Retrograde densification in Bi2Sr2CaCu2O8 superconductors, J. Am. Ceram. Soc. 72: 2346.CrossRefGoogle Scholar
  21. Kirchner, H.P., and Gruver, R.M., 1973, Fracture mirror in alumina ceramics, Philos. Mag. 27: 1433.CrossRefGoogle Scholar
  22. Li, C.-W., and Yamanis, J., 1989, Super-tough silicon nitride with R-curve behavior, Ceram. Eng. Sci. Proc. 10: 632.CrossRefGoogle Scholar
  23. Martin, L.J., 1993, Argonne National Laboratory, unpublished results.Google Scholar
  24. Meyer III, H.M., Hill, D.M., Wagener, T.J., Weaver, J.H., Gallo, C.F., and Goretta, KC., 1989, Single-crystal YBa2Cu3O7_x and Bi2Cal+xSr2_xCu2O8+y surfaces and Ag adatom-induced modification, J. Appi. Phys. 65: 3130.Google Scholar
  25. Miller, T.A, Ostenson, J.E., Li, Q., Schwartzkopf, L.A., Finnemore, D.K, Righi, J., Gleixner, R.A., and Zeigler, D., 1991, Strain tolerant microfilamentary conductors of Bi2Sr2Ca1Cu2O9_8, Appl. Phys. Lett. 58: 2159.CrossRefGoogle Scholar
  26. Murayama, N., Kodama, Y., Sakaguchi, S., and Wakai, F., 1992, Mechanical strength of hot-pressed Bi-Pb-Sr-Ca-Cu-O superconductor, J. Mater. Res. 7: 34.CrossRefGoogle Scholar
  27. Ochiai, S., Osamura, K, and Takayama, T., 1988, Fracture toughness measurements of Ba2YCu3O7_x superconducting oxide by means of indentation technique, Jpn. J.Appl. Phys. 27: L1101.CrossRefGoogle Scholar
  28. Phillips, J.M., Krause, S., Lanagan, M.T., Olson, R.A., Sharpe, P.R., Ray, M.L., Dorris, S.E., and Goretta, KC., 1991, Ca2CuO3/Bi-Sr-Ca-Cu-O composites, Mater. Lett. 11: 10.CrossRefGoogle Scholar
  29. Rice, R.W., 1981, Mechanisms of toughening in ceramic composites, Ceram. Eng. Sci. Proc. 2: 661.CrossRefGoogle Scholar
  30. Schartman, R.C., Sakidja, R., and Hellstrom, E.E., 1993, Supersolidus phase investigation of the Bi-Sr-Ca-Cu-O oxide system in silver tape, J. Am. Ceram. Soc. 76: 724.CrossRefGoogle Scholar
  31. Seino, H., Ishizaki, K., and Takata, M., 1989, HlPped high density Bi-(Pb)-Sr-Ca-Cu-O superconductors produced without any additional treatment, Jpn. J. Appl. Phys. 28: L78.CrossRefGoogle Scholar
  32. Singh, J.P., Guttschow, R.A., Dusek, J.T., and Poeppel, R.B., 1992, Role of p02 in microstructural development and properties of YBa2Cu3Ox superconductors, J. Mater. Res. 7: 2324.CrossRefGoogle Scholar
  33. Singh, J.P., Kullberg, M.L., Poeppel, R.B., Goretta KC., and Leu, H.J., 1990, YBa2Cu3Ox composites with improved toughness and strength, in: “Advances in Superconducting Materials and Electronics Technologies,” D. N. Palmer, ed., Am. Soc. Mech. Eng., New York.Google Scholar
  34. Soylu, B., Adamopoulos, N., Glowacka, D.M., and Evetts, J.E., 1992, Composite reaction texturing of superconducting ceramic composites, Appl. Phys. Lett. 60: 3183.CrossRefGoogle Scholar
  35. Thouless, M.D., Sbaizero, O., Sigl, L.S., and Evans, A.G., 1989, Effect of interface mechanical properties on pullout in a SiC—fiber—reinforced lithium aluminum silicate glass ceramic, J. Am. Ceram. Soc. 72: 525.CrossRefGoogle Scholar
  36. Wu, W., Lanagan, M.T., Kullberg, M.L., Poeppel, R.B., Wang, B., and Danyluk, S., 1993, The relationship between microstructure and residual stress in YBa2Cu3O7-x, Thin Solid Films 223: 260.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • K. C. Goretta
    • 1
  • L. J. Martin
    • 1
  • D. Singh
    • 1
  • R. B. Poeppel
    • 1
  • Nan Chen
    • 2
  • C.-Y. Chu
    • 3
  • J. L. Routbort
    • 1
  • R. A. Gleixner
    • 4
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.Illinois SuperconductorEvanstonUSA
  3. 3.Elan TechnologiesBellevilleUSA
  4. 4.Babcock & WilcoxAllianceUSA

Personalised recommendations