Advertisement

In Situ MOCVD of Dielectric Materials for High-Tc Superconducting Devices

  • Bin Han
  • Deborah A. Neumayer
  • Bruce H. Goodreau
  • Tobin J. Marks
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

Devices which utilize high-Tc superconducting films require dielectric materials with low dielectric losses (tan δ), low dielectric constants, chemical inertness, and similar coefficients of thermal expansion to HTS materials. A major advance in the fabrication of such devices would be the deposition of high quality dielectric films by MOCVD (metal-organic chemical vapor deposition) which would enable the efficient, large-scale fabrication of multilayer superconductor-insulator structures. In this paper, we report the MOCVD deposition of epitaxial thin films of various pervoskite HTS lattice-matched dielectric materials: NdGaO3, PrGaO3, YA1O3, and Sr2AlTaO6. These pervoskite dielectric films were grown in situ on single crystal substrates in a horizontal reactor using volatile metal-organic b-diketonate complexes as precursors. Film morphology and microstructure are characterized by SEM and cross-sectional TEM. Energy dispersive x-ray analysis is used to verify the stoichiometry. The crystallinity and epitaxy of the dielectric films are characterized by x-ray diffraction.

Keywords

High Temperature Superconductor YBCO Film Diffraction Plane High Resolution Electron Microscopy Epitaxial Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Talvacchio and G.R. Wagner, SPIE Proc. 1292:2 (1990), and references therein.Google Scholar
  2. 2.
    W. Ito, S. Okayama, N. Homma, and T. Morishita, App!. Phys. Lett. 62: 312 (1993).CrossRefGoogle Scholar
  3. 3.
    K.H. Young and D.D. Strother, Physica C 208:1 (1993), and references therein.Google Scholar
  4. 4.
    J.M. Philips, M.P. Siegal, R.B. Van Dover, T.H. Marshall, C.D. Brandle, G. Berkstresser, A.J. Strauss, R.E. Fahey, S. Sengupta, A. Cassanho, and H.P. Jenssen, J. Mater. Res. 7:2650 (1992). and references therein.Google Scholar
  5. 5.
    H. Haefke, H.P. Lang, R. Sum, H.J. Guntherodt, L. Berthold, and D. Hesse, Appl. Phys. Lett. 61: 2359 (1992).CrossRefGoogle Scholar
  6. 6.
    S. Honstu, J. Ishii, and S. Kawai, Appl. Phys. Lett. 59:2886 (1991), and references therein.Google Scholar
  7. 7.
    G. Malandrino, D.S. Richeson, T.J. Marks, D.C. DeGroot, J.L. Schindler, and C.R. Kannewurf, Appl. Phys. Lett. 58:182 (1991), and references therein.Google Scholar
  8. 8.
    J. Zhao, Y.Z. Li, C.S. Chers, P.Lu, B. Norris, B. Gallois, F. Kear, X.D. Casandey, R.E. Wu, Muenchausen, and S.M. Garrison, Appl. Phys. Lett. 59:1254 (1991), and references therein.Google Scholar
  9. 9.
    K. Zhang, and A.Erhil, Materials Science Forum, in press, and references therein.Google Scholar
  10. 10.
    F. Hirai and H. Yamane, J. Crystal Growth 107:683 (1991), and references therein.Google Scholar
  11. 11.
    B. Han, D.A. Neumayer, D.L. Schulz, B.I. Hinds, T.J. Marks, H.Zhang, and V.P. Dravid, Chem. Mater. 5: 14 (1993).CrossRefGoogle Scholar
  12. 12.
    M. Sasaura, M. Mukaida, and S. Miyazawa, Appl. Phys. Lett. 57: 2728 (1990) and references therein.Google Scholar
  13. 13.
    H.J. Scheel, M. Berkowski and B. Chabot, J. Crystal Growth, 115: 19 (1991).CrossRefGoogle Scholar
  14. 14.
    G.W. Berkstresser, AJ. Valentino, and C.D. Brandie, J. Crystal Growth, 109: 467 (1991).CrossRefGoogle Scholar
  15. 15.
    H. Asono, S. Kubo, O. Michikawi, M. Saton and T. Konaka, Jpn. J. Appl. Phys. 29: L1452 (1990).CrossRefGoogle Scholar
  16. 16.
    B. Han, D.A. Neumayer, T.J. Marks, D.A. Rudman, H. Zhang, and V.P. Dravid, Appl. Phys. Lett., in press.Google Scholar
  17. 17.
    B. Han, D.A. Neumayer, T.J. Marks, D. B. Buchholz, and R.P.H. Chang, unpublished results.Google Scholar
  18. 18.
    C.D. Brandie and V.J. Fratello, J. Mater. Res. 5: 2160 (1990).CrossRefGoogle Scholar
  19. 19.
    R. Gou, J. Sheen, A. S. Bhalla, F. Ainger, E.C. Subbarao, L.E. Cross, Defense Advanced Research Projects Agency/Office of Naval Research Workshop on Substrate materials for High Tc Superconductors, Williamsburg, VA, 5–7 February, 1992.Google Scholar
  20. 20.
    B. Han, D.A. Neumayer, B.H. Goodreau, T.J. Marks, H. Zhang, and V.P. Dravid, Chem. Mater., in press.Google Scholar
  21. 21.
    G. Brorsson, P. A. Nilsson, E. Olsson, S. Z. Wang, T. Scaeson, and M. Lofgren, Appl. Phys. Lett. 61: 486 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Bin Han
    • 1
  • Deborah A. Neumayer
    • 1
  • Bruce H. Goodreau
    • 1
  • Tobin J. Marks
    • 1
  1. 1.Department of Chemistry, the Materials Research Center, and the Science and Technology Center for SuperconductivityNorthwestern UniversityEvanstonUSA

Personalised recommendations