SNS Josephson Junctions and DC SQUIDs

  • R. Wunderlich
  • J. Langer
  • B. Meyer
  • J. Müller
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)


The properties of YBaCuO/Ag/YBACuO Josephson junctions and SQUIDs are presented. The junctions were prepared in situ across a step edge on MgO substrates. The influence of the silver deposition temperature on the electrical properties of the junctions has been investigated. Higher deposition temperatures reduce the contact resistance perpendicular to the c-axis of YBaCuO. This results in a low resistive shunt of the SNS contact, which decreases the I c R N product. Junctions were fabricated with different preparation parameters. The properties of the SQUIDs can be adjusted [R N from 5 mΩ to 1 Ω, I c from 0.2 mA to 3 mA (at 10 K)]. The low-resistance junction offers good reproducibility. The voltage modulations of the SQUIDs, which are not yet optimized, are of the order 3.5 μV at 50 K and 0.2 μV at 77 K. An upper limit of the flux noise, ø n , of < 80 μø 0/Hz1/2 and of the energy sensitivity, є n , of <6.8.10−28 J/Hz measured in the direct mode was determined for f >1 kHz.


Contact Resistance Josephson Junction Normal Metal Photoresist Mask Energy Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Friedl, B. Roas, M. Römheld, L. Schultz, and W. Jutzi, Appl. Phys. Leu. 59: 2751 (1991).CrossRefGoogle Scholar
  2. 2.
    J.A. Edwards, J.S. Satchell, N.G. Chew, R.G. Humphreys, M.N. Keene, and O.D. Dosser, Appl. Phys. Leu. 60: 2433 (1992).CrossRefGoogle Scholar
  3. 3.
    D. Grundier, R. Eckart, B. David, and O. Dössel, Appl. Phys. Len. 62: 2134 (1993).CrossRefGoogle Scholar
  4. 4.
    R. Gross, P. Chaudhari, M. Kawasaki, M.B. Ketchen, and A. Gupta, Appl. Phys. Lett. 57: 727 (1990).CrossRefGoogle Scholar
  5. 5.
    M.S. Dilorio, S. Yoshizumi, K.Y. Yang, J. Zhang, and M. Maung, Appl. Phys. Leu. 58: 2552 (1991).CrossRefGoogle Scholar
  6. 6.
    R.H. Ono, L.R. Vale, K.R. Kimminau, J.A. Beall, M.W. Cromar, C.D. Reintsema, T.E. Harvey, P.A. Rosenthal, and D.A. Rudman, IEEE Trans. Appl. Supercon. 3: 2389 (1993).CrossRefGoogle Scholar
  7. 7.
    R. Wunderlich, J. Langer, J. Koriath, B. Meyer, and J. Müller, Appl. Supercon. 10: 1675 (1993).CrossRefGoogle Scholar
  8. 8.
    M.S. Dilorio, S. Yoshizumi, K-Y. Yang, M. Maung, J. Zhang, and B. Power, IEEE Trans. Appl. Supercon. 3: 2011 (1993).CrossRefGoogle Scholar
  9. 9.
    K.K. Likharev, Rev. Mod. Phys. 51:101 (1979).Google Scholar
  10. 10.
    R.P. Robertazzi, A.W. Kleinsasser, R.B. Laibowitz, R.H. Koch, and K.G. Stawiasz, IEEE Trans. Appl. Supercon. 3: 1308 (1993).CrossRefGoogle Scholar
  11. 11.
    M. Yu. Kupriyanov and K.K. Likharev, IEEE Trans. Mann. 27: 2460 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. Wunderlich
    • 1
  • J. Langer
    • 1
  • B. Meyer
    • 1
  • J. Müller
    • 1
  1. 1.Department of Semiconductor TechnologyTechnical University Hamburg-HarburgHamburgGermany

Personalised recommendations