Bi-Epitaxial Template Grain Boundary Weak Links on MgO: High Tc Josephson Junctions

  • R. P. J. IJsselsteijn
  • J. W. M. Hilgenkamp
  • D. Terpstra
  • J. Flokstra
  • H. Rogalla
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)


Using pulsed laser deposition, bilayers of YBa2Cu3O7ICeO2 and single layers of YBa2Cu3O, have been deposited on (001) oriented MgO substrates. The orientation of CeO2 and the superconducting properties of YBa2Cu3O7 have been investigated as a function of the deposition temperature and the distance between target and substrate. These results have been used to fabricate bi-epitaxial template grain boundaries in which the template layer has been structured using the CaO lift-off technique. The YBa2Cu3O7 top layer has been structured into Josephson junctions. The junctions showed RSJ-like IV curves at low temperatures. At higher temperatures the IV curves were much more rounded. For temperatures just below the critical temperature of the superconductor a resistive tail was observed in the R(T) measurements. The tail could be fitted with the Thermally Activated Phase Slippage theory. The results are in good agreement with the fits of the Ic(T) curves.


Critical Temperature Deposition Temperature Josephson Junction Substrate Distance Normal Resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Dimos, P. Chaudhari, J. Mannhart, and F.K. Legeous, Phys. Rev. Lett. 61: 219 (1988).CrossRefGoogle Scholar
  2. 2.
    K. Char, M.S. Colclough, L.P. Lee, and G. Zaharchuk, Appl. Phys. Lett. 59: 2177 (1991).CrossRefGoogle Scholar
  3. 3.
    S. Tanaka, H. Kado, T. Matsuura, and H. Itozaki, IEEE Transaction on Applied Superconductivity, vol 3: 2365 (1993).CrossRefGoogle Scholar
  4. 4.
    X.D. Wu. L. Luo, R.E. Muenchausen, K.N. Springer, and S. Foltyn, Appl. Phys. Lett. 60: 1381 (1992).CrossRefGoogle Scholar
  5. 5.
    H.S. Kim, and H.S. Kwok, Appl. Phys. Lett. 61: 2234 (1992).CrossRefGoogle Scholar
  6. 6.
    M. Kamei, H. Takahashi, S. Fujino, and T. Morishita, Physica C 199: 425 (1992).CrossRefGoogle Scholar
  7. 7.
    B. Roas, Appl. Phys. Lett. 60: 2594 (1991).CrossRefGoogle Scholar
  8. 8.
    J. Gao, Yu.M. Boguslayskij, B.B.G. Klopman, D. Terpstra, R. Wijbrans, G.J. Gerritsma, and H. Rogalla, J. Appl. Phys. 72: 575 (1990).Google Scholar
  9. 9.
    R. Gross, P. Chaudhari, D. Dimos, A. Gupta, and G. Koren, Phys. Rev. Lett. 64: 228 (1990).CrossRefGoogle Scholar
  10. 10.
    V. Ambegaokar, and B.I. Halperin, Phys. Rev. Lett. 22: 1364 (1969).CrossRefGoogle Scholar
  11. 11.
    A. Barone, and G. Paterno, “Physics and Applications of the Josephson Effect”, Wiley International, New York (1982).CrossRefGoogle Scholar
  12. 12.
    L. Solymer, “Superconductive Tunneling and Applications”, Chapman and Hall, London (1972).Google Scholar
  13. 13.
    G. Deutscher, and K.A. Müller, Phys. Rev. Lett. 59: 1745 (1987).CrossRefGoogle Scholar
  14. 14.
    R.P.J. IJsselsteijn, D. Terpstra, J. Flokstra, and H. Rogalla, submitted to LT 20, August 4–11, Eugene, USA.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. P. J. IJsselsteijn
    • 1
  • J. W. M. Hilgenkamp
    • 1
  • D. Terpstra
    • 1
  • J. Flokstra
    • 1
  • H. Rogalla
    • 1
  1. 1.Department of Applied PhysicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations