Advertisement

Fabrication, Properties, and Microstructures of High-Tc Tapes and Coils Made from Ag-Clad Bi-2223 Superconductors

  • U. Balachandran
  • A. N. Iyer
  • C. A. Youngdahl
  • L. R. Motowidlo
  • J. G. HoehnJr.
  • P. Haldar
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

Pb0.4Bi1.8Sr2Ca2.2Cu3Ox (Bi-2223) precursor powders were prepared via a solid-state reaction of carbonates and oxides of Bi, Pb, Sr, Ca, and Cu. Our results indicate that an in-situ reaction between constituent phases, accompanied by the formation of a transient liquid that is consumed during final heat treatment, is essential to obtain increased density with greater connectivity between the 2223 grains. Relative amounts of the constituent phases were adjusted in the powder by varying the calcination conditions, and the powder was then used to fabricate Ag-clad tapes by the powder-in-tube technique. With the improving process conditions, transport critical current density values greater than 4 × 104 A/cm2 at 77 K and 2 × 105 A/cm2 at 4.2 and 27 K have been obtained in short tape samples. Long tapes were cut into lengths up to 10 m long and used in parallel to fabricate small superconducting pancake coils. The coils were characterized at 77, 27, and 4.2 K and the results are discussed in this paper.

Keywords

Critical Current Density Constituent Phasis Final Heat Treatment High Critical Current Density Conductor Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Takano, J. Takada, K. Oda, H. Kitaguchi, Y. Miura, Y. Ikeda,Y. Tornii, and H. Mazaki, High-Tc phase promoted and stabilized in the Bi,Pb-Sr-Ca-Cu-O system, Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
  2. 2.
    K. Togano, H. Kumakura, H. Maeda, E. Yanagisawa, and K. Takashashi, Properties of Pb-doped Bi-Sr-Ca-Cu-O superconductors, Appl. Phys. Lett. 53, 1329 (1988).CrossRefGoogle Scholar
  3. 3.
    J. M. Tarascon, Y. Le Page, P. Barboux, B. G. Bagley, L. H. Greene, W. R. McKinnon, G. W. Hull, M. Giroud, and D. M. Hwang, Crystal structure and physical properties of the superconducting phase Bi4(Sr,Ca)6Cu4O16+x, Phys. Rev. B37, 9382 (1988).CrossRefGoogle Scholar
  4. 4.
    H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, A new high-Tc oxide superconductor without a rare earth element, Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
  5. 5.
    K. Sato, T. Hikata, H. Mukai, M. Ueyama, H. Shibuta, T. Kato, T. Masuda, M. Magata, K. Iwata, and T. Mitsui, High-Tc silver-sheathed Bi-based superconducting wires, IEEE Trans. Mag. 27, 1231 (1991).CrossRefGoogle Scholar
  6. 6.
    Y. Yamada, B. Obst, and R. Flukiger, Microstructural study of Bi(2223)/Ag tapes with Je (77 K, O T) values of up to 3.3 x 104 A/cm2, Supercond. Sci. Technol. 4, 165 (1991).Google Scholar
  7. 7.
    K. H. Sandhage, G. N. Riley, Jr., and W. L. Carter, Critical issues in the OPIT processing of high-Jo BSCCO superconductors, J. Metals. 43, 21 (1991).Google Scholar
  8. 8.
    P. Haldar, J. G. Hoehn, Jr., J. A. Rice, M. S. Walker, and L. R. Motowidlo, Transport critical current densities of silver clad Bi-Pb-Sr-Ca-Cu-O tapes at liquid helium and hydrogen temperatures, Appl. Phys. Lett. 61, 604 (1992).CrossRefGoogle Scholar
  9. 9.
    U. Balachandran, A. N. Iyer, P. Haldar, and L. R. Motowidlo, The powder-in-tube processing and properties of Bi-2223, J. Metals 45, 54 (1993).Google Scholar
  10. 10.
    L. R. Motowidlo, E. Gregory, P. Haldar, J. A. Rice, and R. D. Blaugher, Critical currents and processing of wound coils of Ag-sheathed Bi-2223 high To tape: Microstructural and pinning effects, Appl. Phys. Lett. 59, 736 (1991).CrossRefGoogle Scholar
  11. 11.
    P. Haldar, J. G. Hoehn, Jr., J. A. Rice, and L. R. Motowidlo, Enhancement in critical current density of Bi-Pb-Sr-Ca-Cu-O tapes by thermomechanical processing: Cold rolling versus uniaxial pressing, Appl. Phys. Lett. 60, 495 (1992).CrossRefGoogle Scholar
  12. 12.
    D. Y. Kaufman, M. T. Lanagan, S. E. Dorris, J. T. Dawley, I. D. Bloom, M. C. Hash, N. Chen, M. R. DeGuire, and R. B. Poeppel, Thermomechanical processing of reactively sintered Ag-clad (Bi,Pb)2Sr2Ca2Cu3Ox tapes, Appl. Supercond. 1, 81 (1993).CrossRefGoogle Scholar
  13. 13.
    R. Flukiger, B. Hensel, A. Jeremie, M. Decroux, H. Kupfer, W. Jahn, E. Seibt, W. Goldacker, Y. Yamada, and J. Q. Xu, High critical current densities in Bi(2223)/Ag tapes, Supercond. Sci. Technol. 5, 561 (1992).Google Scholar
  14. 14.
    P. Haldar, J. G. Hoehn, Jr., U. Balachandran, and L. R. Motowidlo, Processing and transport properties of high-Jo silver-clad Bi-2223 tapes and coils, J. Elec. Mater. (1993 in press).Google Scholar
  15. 15.
    K. Sato, M. Shibuta, T. Hikata, T. Kato, and Y. Iwasa, Critical currents of silver-sheathed bismuth-based tapes at 20 K: Small coils and field orientation anisotropy in external fields up to 20 T, Appl. Phys. Lett. 61, 714 (1992).CrossRefGoogle Scholar
  16. 16.
    P. Haldar and L. R. Motowidlo, Processing high critical current density Bi-2223 wires and tapes, J. Metals. 44, 54 (1992).Google Scholar
  17. 17.
    P. Haldar, J. G. Hoehn, Jr., L. R. Motowidlo, U. Balachandran, and Y. Iwasa, Fabrication and characteristics of small pancake coils from HTS Bi-2223 Ag-clad tapes, Advances in Cryogenic Engg. 40 (1993, in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • U. Balachandran
    • 1
  • A. N. Iyer
    • 1
  • C. A. Youngdahl
    • 1
  • L. R. Motowidlo
    • 2
  • J. G. HoehnJr.
    • 3
  • P. Haldar
    • 3
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.IGC Advanced Superconductors, Inc.WaterburyUSA
  3. 3.Intermagnetics General Corp.GuilderlandUSA

Personalised recommendations