Advertisement

High-Tc Oxide Current Leads and Superconducting Magnet Using No Liquid Helium

  • Y. Yamada
  • J. Sakuraba
  • T. Hasebe
  • F. Hata
  • C. K. Chong
  • M. Ishihara
  • K. Watanabe
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

We applied Bi-based oxide superconducting bulk for use as current leads in a cryocoolercooled superconducting magnet that does not use liquid helium. The bulk has a composition of (Bi + Pb):Sr:Ca:Cu = 2:2:2:3 and is utilized in the form of thin-walled sintered cylindrical tubes. The critical current and the critical current density of the bulk under a self-magnetic field at 77 K are 1100 A and 1200 A/cm2, respectively.

Within the cryocooler-cooled superconducting magnet unit, conductive cooling of a (Nb,Ti)3Sn coil is performed with a Gifford-McMahon type (G-M) cryocooler. The Bi-based oxide bulk is used for current leads. The magnet is capable of generating, at a current of 400 A, a steady magnetic field of 4 T in a room-temperature 38 mm diameter bore. Heat leakage at this time is less than 0.4 W. This marks the first successful application of high-Tc oxide superconducting bulk leads to such a magnet system.

Keywords

Liquid Helium Critical Current Density Stray Field Heat Leakage Coil Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Y. Yamada, T. Yanagiya, T.Hasebe, K. Jikihara, M. Ishizuka, S. Yasuhara and M. Ishihara: IEEE Trans. Appl. Superconductivity 3 (1993) 923.CrossRefGoogle Scholar
  2. 2).
    J.R. Hull: IEEE Trans. Appl. Superconductivity 3 (1993) 869.CrossRefGoogle Scholar
  3. 3).
    P.F. Herrmann, C. Albrecht, J. Bock, C. Cottevieille, S. Elschner, W. Herkert, M.O. Lafon, H. Lauvray, W. Nick, E. Preisier, H. Salzburger, J.M. Tourre andT. Verhaege: IEEETrans. Appl. Superconductivity 3 (1993) 876.CrossRefGoogle Scholar
  4. 4).
    R.C. Niemann, Y.S. Cha and J.R. Hull: IEEE Trans. Appl. Superconductivity 3 (1993) 392.CrossRefGoogle Scholar
  5. 5).
    J.L. Wu: IEEE Trans. Appl. Superconductivity 3 (1993) 396.CrossRefGoogle Scholar
  6. 6).
    K. Ueda, T. Bohno, K. Takita, K. Mukae, T. Ueda, I. Itoh, M. Mimura, N. Uno and T. Tanaka: IEEE Trans. Appl. Superconductivity 3 (1993) 400.CrossRefGoogle Scholar
  7. 7).
    J. Bock, H. Bestgen, S. Eischner and E. Preisler IEEE Trans. Appl. Superconductivity 3 (1993) 1659.Google Scholar
  8. 8).
    M. Matsukawa, K. Noto, H. Fujishiro, T. Todate, F. Tatesaki, K. Mori, Y. Yamada and M. Ishihara: LT-20 Engine 1993. Submitted.Google Scholar
  9. 9).
    K. Watanabe, Y. Yamada, J. Sakuraba, F. Hata, C.K. Chon, T. Hasebe and M. Ishihara: Jpn. J. Appl. Phys. 32 (1993) p. 1488.Google Scholar
  10. 10).
    K. Watanabe, Y. Yamada, J. Sakuraba, F. Hata, C.K. Chon, T. Hasebe and M. Ishihara: Proc. 8th US-Japan Workshop on High Field Superconducting Materials, Wires and Conductors and Standard Procedures for High-Field Superconducting Wires Testing, edited by K. Yamafuji, H. Wada, D.C. Larbalestier and M. Suenaga, Madison, p. 112 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Y. Yamada
    • 1
  • J. Sakuraba
    • 1
  • T. Hasebe
    • 1
  • F. Hata
    • 1
  • C. K. Chong
    • 1
  • M. Ishihara
    • 1
  • K. Watanabe
    • 2
  1. 1.Sumitomo Heavy Industries, Ltd.Hiratsuka 254Japan
  2. 2.Institute for Material ResearchTohoku UniversitySendai 980Japan

Personalised recommendations