Advertisement

Review of High Cycle Fatigue Properties of Structural Materials at Cryogenic Temperatures

  • O. Umezawa
  • T. Ogata
  • T. Yuri
  • K. Nagai
  • K. Ishikawa
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

Using a new system installed in 1983 at NRIM, we have carried out a high cycle fatigue test at liquid helium temperature. Based on our experimental data, high cycle fatigue properties of some titanium alloys and austenitic steels at cryogenic temperatures (at 4 K, 77 K and 293 K) are outlined in this paper. Generally the S-N curves shifted to a higher stress level at lower temperature, and they were almost parallel. As a result, the fatigue strength at 106 cycles increased in proportion to a gain in strength by temperature decrease. In Ti-6A1-4V forged alloys and JN1 steel, however, the difference of S-N curves among the three temperatures became narrower as the Nf increased and a fatigue limit was hardly seen. During cryogenic high cycle fatigue for the titanium alloys and some austenitic steels, subsurface crack initiation apparently occurred without the existence of any defects like inclusions and pores. The microstructural origin of subsurface crack initiation and relevant deformation behavior are also examined.

Keywords

Titanium Alloy Crack Initiation Fatigue Strength Fatigue Test Cycle Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.R. Schwarztberg et al., “Cryogenic Materials Data Handbook”, AFML-TDR-64–286, (1970).Google Scholar
  2. 2.
    T. Ogata and K. Ishikawa, A new liquid helium temperature fatigue testing system, Trans. ISIJ, 26: 48 (1986).CrossRefGoogle Scholar
  3. 3.
    K. Nagai, T. Ogata, T. Yuri and K. Ishikawa, Fatigue testing at 4 K with a helium recondensation system, in:“Advances Cryo. Eng. Mater.”, Plenum Press. N.Y., Vol.32:329 (1986).Google Scholar
  4. 4.
    T. Yuri, K. Nagai, T. Ogata, O. Umezawa and K. Ishikawa, Fatigue testing system and result of long-term operation, Cryo. Eng., 26: 184 (1991), in Japanese.CrossRefGoogle Scholar
  5. 5.
    T. Ogata, K. Ishikawa, K. Nagai, T. Yuri and O. Umezawa, Specimen temperature rise and testing conditions during fatigue tests at cryogenic temperatures, Cryo. Eng., 26: 190 (1991), in Japanese.CrossRefGoogle Scholar
  6. 6.
    K. Nagai. T. Ogata, T. Yuri, K. Ishikawa, T. Nishimura, T. Mizoguchi and Y. Ito, Fatigue fracture of Ti-5A1–2.5Sn ELI alloy at liquid helium temperature, Trans. ISIJ, 27: 376 (1987).CrossRefGoogle Scholar
  7. 7.
    K. Nagai, T. Yuri, T. Ogata. O. Umezawa, K. Ishikawa, T. Nishimura, T. Mizoguchi and Y. Ito, Cryogenic mechanical properties of Ti-6A1–4V alloys with three levels of oxygen content, ISIJ Inter., 31: 882 (1991).CrossRefGoogle Scholar
  8. 8.
    O. Umezawa, K. Nagai, T. Yuri, T. Ogata and K. Ishikawa, High-cycle fatigue properties of titanium alloys at cryogenic temperatures, in:“Advances Cryo. Eng. Mater.”, Plenum Press, N.Y.. Vol.38:175 (1992).Google Scholar
  9. 9.
    T. Yuri, K. Nagai and K. Ishikawa, Cryogenic high cycle fatigue properties of cold-rolled and sensitized SUS316LN, CAMP-ISIJ, Vo1.1:1417 (1988), in Japanese.Google Scholar
  10. 10.
    T. Yuri, K. Nagai, T. Ogata, O. Umezawa and K. Ishikawa, Cryogenic high cycle fatigue properties of high-manganese steels. CAMP-ISIJ, Vol. 2: 1327 (1989), in Japanese.Google Scholar
  11. 11.
    T. Yuri, K. Nagai, O. Umezawa, T. Ogata and K. Ishikawa, Mechanical and high cycle fatigue properties of y’-strengthened Fe-Ni-Mn-Cr alloy at cryogenic temperatures. CAMP-ISIJ, Vol. 3: 1695 (1990), in Japanese.Google Scholar
  12. 12.
    K. Nagai, T. Yuri, O. Umezawa, T. Ogata and K. Ishikawa, High cycle fatigue of some austenitic steels at cryogenic temperatures. in:“Stainless Steel 1991”, ISIJ, Vol.1:456 (1991).Google Scholar
  13. 13.
    K. Nagai, T. Yuri, O. Umezawa, T. Ogata and K. Ishikawa, High cycle fatigue properties of cryogenic structural alloys. Cryo. Eng., 26: 255 (1991), in Japanese.CrossRefGoogle Scholar
  14. 14.
    T. Yuri, K. Ishikawa, K. Nagai, T. Ogata and O Umezawa, Fatigue properties of cold-rolled and sensitized SUS347 austenitic stainless steels at cryogenic temperatures, Cryogenics, 32 ICMC Supplement: 89 (1992).Google Scholar
  15. 15.
    O. Umezawa, K. Nagai. T. Yuri, T. Ogata and K. Ishikawa, High-cycle fatigue property of high Cr-Ni austenitic steels at cryogenic temperatures, CAMP-ISIJ, Vol. 5: 2091, in Japanese.Google Scholar
  16. 16.
    O. Umezawa, K. Nagai and K. Ishikawa, Subsurface crack initiation in high cycle fatigue of Ti-5A1–2.5Sn extra-low interstitial alloy at liquid helium temperature, Mater. Sci. Eng. A, 129: 217 (1990).CrossRefGoogle Scholar
  17. 17.
    O. Umezawa, K. Nagai and K. Ishikawa, Subsurface crack initiation in high cycle fatigue of T1–6A1–4V alloys at cryogenic temperatures, Tetsu-to-Hagane. 76: 125 (1990), in Japanese.Google Scholar
  18. 18.
    O. Umezawa, K. Nagai and K. Ishikawa, Internal crack initiation in high cycle fatigue of Ti-6A1–4V alloys at cryogenic temperatures, in:“Fatigue 90”. H. Kitagawa and T. Tanaka eds., MCEP, Birmingham, Vol.1:267 (1990).Google Scholar
  19. 19.
    O. Umezawa, K. Nagai, T. Yuri and K. Ishikawa, Subsurface crack initiation in high cycle fatigue of 0.1N–32Mn-7Cr steel at cryogenic temperatures. in:“Mech. Behavior of Materials - VI”, M. Jono and T. Inoue eds., Pergamon Press, N.Y., Vol.4:301 (1991).Google Scholar
  20. 20.
    Umezawa and K. Ishikawa, Phenomenological aspects of fatigue life and fatigue crack initiation in high strength alloys at cryogenic temperatures, Mater. Sci. Eng. A,in the press.Google Scholar
  21. 21.
    O. Umezawa, K. Nagai and K. Ishikawa, Transmission electron microscopy study of high cycle fatigue deformation in Ti-5A1–2.5Sn extra-low interstitial alloy at cryogenic temperatures, Mater. Sci. Eng. A, 129: 223 (1990).CrossRefGoogle Scholar
  22. 22.
    O. Umezawa and K. Ishikawa, Deformation structure in high-cycle fatigue of 0.1N323n-7Cr steels at cryogenic temperatures, in: “Advances Cryo. Eng. Mater.”, Plenum Press, N.Y., Vol.38:141 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • O. Umezawa
    • 1
  • T. Ogata
    • 1
  • T. Yuri
    • 1
  • K. Nagai
    • 1
  • K. Ishikawa
    • 1
  1. 1.National Research InstituteTsukuba, Ibaraki 305Japan

Personalised recommendations