Advertisement

Effects of Deformation-Induced Twinning and Martensitic Transformation on the Cryogenic Mechanical Properties of Fe-19Mn-5Cr-(0-5)Al-0.2C Alloys

  • B. W. Oh
  • S. J. Cho
  • S. H. Hong
  • Y. G. Kim
  • W. J. Kim
  • Y. P. Kim
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)

Abstract

The microstructures and cryogenic mechanical properties of Fe-19Mn-5Cr-(0,3,5)A10.2C alloys have been investigated from room temperature to 77 K. Addition of Al greatly increased austenite stability against ε martensite transformation. The fully austenitic Fe19Mn-5Cr-3A1-0.2C alloy showed a UTS of 1120MPa and high elongations of about 75% at both RT and 77 K, due to the formation of strain-induced deformation twins during tensile testing. The alloy also exhibited a high impact energy of 160 J at 77 K.

Keywords

Stack Fault Energy Deformation Twin High Elongation High Impact Energy Epsilon Martensite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Bruner and D.A. Sarno, Adv.Cryo.Eng. 24: 529 (1978)Google Scholar
  2. 2.
    R.L. Tobler, H.I. Mchenry, and R.P. Reed, ibid. 24: 560 (1978)Google Scholar
  3. 3.
    G.T. Haddick, L.D. Thomson, E.R. Parker, and V.F. Zackay, Metal Progress,Nov:37(1978)Google Scholar
  4. 4.
    Y.G. Kim, Y.S. Park, and J.K. Han, Metall. Trans., 16A: 1689 (1985)Google Scholar
  5. 5.
    Y. Tomota, M. Strum, and J.W. Morris, Jr., Metall. Trans., 17A: 537 (1986)Google Scholar
  6. 6.
    E. Gartstein and A. Rabinkin, Acta Matall., 27: 1053 (1979)Google Scholar
  7. 7.
    Jong M. Han, Cha Y. Lim and Young G. Kim, Acta Metall. et Mater. 39: 2169 (1991)Google Scholar
  8. 8.
    K.Sato, M.Ichinose, Y. Hirotsu, and Y. Inoue, ISIJ International 29: 868 (1989)Google Scholar
  9. 9.
    I.L. Dillamore, Metall. Trans., 1:2415(1970) Google Scholar
  10. 10.
    M. Ahlers, Metall. Trans., 1:2415(1970)Google Scholar
  11. 11.
    T.W. Kim and Y.G. Kim, Mater. Sci. and Eng.,A 161: L13 (1993)Google Scholar
  12. 12.
    H. Fujita and T. Katayama, Materials Trans. JIM. 33: 243 (1992)Google Scholar
  13. 13.
    P.H. Adler, G.B. Olson and W.S. Owen, Metall. Trans. 17A: 1725 (1986)Google Scholar
  14. 14.
    G.B. Olson, M. Cohen, Metall. Trans. 7A: 1897 (1976)Google Scholar
  15. 15.
    D.Dew-Hughes and L. Kaufman, CALPHAD 3: 175 (1979)Google Scholar
  16. 16.
    J.F. Breedis and L. Kaufman, Metall. Trans. 2: 2359 (1971)Google Scholar
  17. 17.
    A.P. Blandin, “Phase Stability of Metals and Alloys”, O. Kubaschewski, ed., MacGraw-Hill, 1967Google Scholar
  18. 18.
    L. Kaufman, CALPHAD 1: 28 (1977)CrossRefGoogle Scholar
  19. 19.
    W.S. Yang, C.M. Wan, J. of Mater. Sci. 25: 1821 (1990)Google Scholar
  20. 20.
    K. Ishida and T. Nishizawa, Trans. JIM. 15: 225 (1974)Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • B. W. Oh
    • 1
  • S. J. Cho
    • 1
  • S. H. Hong
    • 1
  • Y. G. Kim
    • 1
  • W. J. Kim
    • 2
  • Y. P. Kim
    • 2
  1. 1.Dept. of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyTaejonKorea
  2. 2.R&D CenterKorea Gas CorporationAnsanKorea

Personalised recommendations