Evaluation of Epoxy Resin by Positron Annihilation for Cryogenic Use

  • Shigehiro Nishijima
  • Toichi Okada
  • Yoshihide Honda
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 40)


The physical properties of commercially available epoxy resins for cryogenic use have been measured and were compared with the free volume evaluated by positron annihilation. The macroscopic physical properties of epoxy resin were changed by adding the plasticizer or changing the molecular weight between crosslinks. The life time of ortho-positronium were used to evaluate the free volume. The crosslinking density were changed systematically by changing the amount of plasticizer. The lifetime of ortho-positronium were used to evaluate the free volume in the epoxy resins. The different free volume dependence of macroscopic physical properties, such as fracture toughness, were found between the two systems even if the glass transition temperature was almost same. The fracture toughness of the two systems also showed the different crosslinking density dependence at liquid helium temperature. This means that the positron annihilation spectroscopy could be applicable to the molecular design of the glassy polymer epoxy resins for cryogenic use.


Fracture Toughness Free Volume Vickers Hardness Tertiary Amine Positron Annihilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Suzuki, Y. Oki, M. Numajiri, T. Mimura, K. Kondo and Y. Ito, J. Polym. Sci. 30: 517 (1992)Google Scholar
  2. 2.
    K. Tanaka, M. Katsube, K. Okamoto, H. Kita, O. Sueoka and Y. Ito, Bull. Chem. Soc. Jpn. 65: 1981 (1992)Google Scholar
  3. 3.
    Y. Kobayashi, W. Zheng, E. F. Meyer, J. D. McGervey, A. M. Jameison and R. Simha, Macromolecules 22: 2302 (1989)CrossRefGoogle Scholar
  4. 4.
    Y. Kobayashi, J. Chem. Soc. Faraday Trans. 87: 3641 (1991)CrossRefGoogle Scholar
  5. 5.
    J. A. Hinkley, A. Eftekhari, R. A. Crook, B. J. Jensen and J. J. Singh, J. Poym. Sci., Part: Polym. Phys. 30: 1195 (1992)CrossRefGoogle Scholar
  6. 6.
    J. J. Singh, W. H. Holt and W. Mock Jr., Nucl. Instrum. Methods 201: 458 (1982)Google Scholar
  7. 7.
    F. H. J. Maurer and M. Welander’Positron and Positron Chemistry’(Ed. Y. C. Jean), World Scientific, 89 (1989)Google Scholar
  8. 8.
    J. M. Dale, L. D. Hulett and T. M. Rosseel, J. Appl. Polym. Sci, 33: 3055 (1987)CrossRefGoogle Scholar
  9. 9.
    P. Kirkegaard, M. Eldrup, O. E. Mogensen and N. Pedersen, J.Comput. Phys. Commun. 23: 307 (1988)CrossRefGoogle Scholar
  10. 10.
    Q. Deng, C. S. Sundar and Y. C. Jean, J. Phys. Chem. 96: 492 (1988)CrossRefGoogle Scholar
  11. 11.
    Y. C. Jean, ‘Positron and Positronium Chemistry’ (Ed. Y. C. Jean), World Scientific, London, 1 (1990)Google Scholar
  12. 12.
    K. Okamoto, K. Tanaka, M. Katsube, O. Sueoka, and Y. Ito, Radias. Phys. Chem. 41: 497 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Shigehiro Nishijima
    • 1
  • Toichi Okada
    • 1
  • Yoshihide Honda
    • 1
  1. 1.ISIROsaka UniversityIbaraki, Osaka 567Japan

Personalised recommendations