Skip to main content

Field and Length Dependence of the Creep Rate in Proximity Effected Multifilamentary Strands

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: An International Cryogenic Materials Conference Publication ((ACRE,volume 40))

  • 29 Accesses

Abstract

Magnetization creep rates have been measured in proximity effected multifilamentary superconductive strands. Measurements have been made as a function of field for both untwisted strands of various lengths (L), and longer strands for several twist pitches (Lp). The results are described using a model which includes dual field gradients and a semi-Bean approximation. Three regimes are found; (1) low fields where the creep rate is similar to NbTi, (2) intermediate fields, where the creep rate is high due to proximity effect (PE), and (3) high fields, where the NbTi creep rate is recovered. U0 values for proximity effected strands are found to be between 5.3 and 10 meV. PE creep in twisted 71.1 cm strands (even where Lp/L ≪ 1) in which static PE at lower fields is controlled by Lp, is strongly influenced by end effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.J. Can Jr., Effect of twist on wires made from in-situ superconductors, J. Appl. Phys. 54, 6549 (1983).

    Article  Google Scholar 

  2. N. Harada, Y. Mawatari, O. Miura, et al,Excess magnetization due to interfilamentary proximity coupling in NbTi multifilamentary wires, Cryogenics 31, 183 (1991).

    Google Scholar 

  3. M. D. Sumption and E. W. Collings, Effect of twist pitch, sample length, and field orientation on the proximity enhanced magnetization of fine filamentary multifilamentary strands, Adv. Cryo. Eng. (Materials) 38, 783 (1992).

    CAS  Google Scholar 

  4. M. D. Sumption, Proximity effect magnetization and energy loss in multifilamentary composites: influence of strand design and sample geometry, Ph.D. Thesis, Ohio University, 1992.

    Google Scholar 

  5. W.S. Gilbert, R.F. Althaus, P.J. Barale, et al,Magnetic field decay in model SSC dipoles, IEEE Trans. Magn. 25, 1459 (1989).

    Google Scholar 

  6. H. Bruck, D. Gall, G. Knies, et al,Time dependent field distortions from magnetization currents in the superconducting HERA magnets, Cryogenics 30, 606 (1990).

    Google Scholar 

  7. R. Stiening, SSC Lab Internal Report SSCL-359 (1991).

    Google Scholar 

  8. A.K. Ghosh, Youwen Xu, and M. Suenaga, Flux creep in multifilamentary conductors of NbTi and Nb3Sn, Adv. Cryo. Eng. (Materials) 36, 27 (1990).

    Article  CAS  Google Scholar 

  9. K. Yamafuji, Y. Mawatari, N. Harada, et al,Effect of flux creep on SSC dipole magnets, Cryogenics 30 (Suppl.), 615 (1990).

    Google Scholar 

  10. K. Matsumoto, A. Takagi, Y. Tanaka, et al,Magnetization decay effects in NbTi multifilamentary superconducting wires, IEEE Trans. MAG. 27, 2411 (1991).

    Google Scholar 

  11. K. R. Marken Jr., M. D. Sumption, and E. W. Collings, Magnetization decay of SSC-type strands in various short test sample configurations, Adv. Cryo. Eng. (Materials) 38, 715 (1992).

    CAS  Google Scholar 

  12. K. Yamafuji, N. Harada, Y. Mawatari, Creep rates of excess magnetization due to interfilamentary proximity couplings in superconducting NbTi multifilamentary wires, Supercond. Sci. Technol. 5, S117 (1992).

    CAS  Google Scholar 

  13. M.D. Sumption, K.R. Marken, and E.W. Collings, Enhanced static magnetization and creep in fine-filamentary and SSC-prototype strands via helical cabling geometry enhanced proximity effects, IEEE Trans. Appl. Superconductivity 3, 751 (1993).

    Article  Google Scholar 

  14. M.R. Beasley, R. Labusch, and W.W. Webb, Flux creep in Type-II superconductors, Phys. Rev. 181, 682 (1969).

    Article  Google Scholar 

  15. Y. Xu, M. Suenaga, A.R. Moodenbaugh, and D.O. Welsh, Magnetic field and temperature dependence of magnetic flux creep in c-axis oriented YBa2Cu307 powder, Phys. Rev. B 40, 10882 (1989).

    Article  CAS  Google Scholar 

  16. P.J. Kung, M.P. Maley, M.E. McHenry, J.O. Willis, and J.Y. Coulter, Magnetic hysteresis and flux creep of melt-powder-growth YBa2Cu307 superconductors, Phys. Rev. B, 46, 6427 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sumption, M.D., Collings, E.W. (1994). Field and Length Dependence of the Creep Rate in Proximity Effected Multifilamentary Strands. In: Reed, R.P., Fickett, F.R., Summers, L.T., Stieg, M. (eds) Advances in Cryogenic Engineering Materials . An International Cryogenic Materials Conference Publication, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9053-5_102

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9053-5_102

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9055-9

  • Online ISBN: 978-1-4757-9053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics