Advertisement

Materials pp 397-404 | Cite as

Fracto-Emission from Crystalline and Non-Crystalline Materials at Cryogenic Temperatures

  • Shigehiro Owaki
  • Toichi Okada
  • Sumio Nakahara
  • Kiyoshi Sugihara
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 38)

Abstract

Electron emissions from metals, FRP and ceramics during the fracture process (fracto-emission) at cryogenic temperatures have been reported in previous conferences. In this paper, the FEs from some crystalline (single and poly-crystal) and non-crystalline (glassy state) insulating materials are compared and discussed. The FEs from sodium silicate glass and pure fused silica are very similar to those from poly-crystalline ceramics, but are different from those from synthetic quartz (single crystal) especially for fracture at room temperature. From experimental results, the fracture modes, generation of free electrons and its compensation in these materials are discussed.

Keywords

Decay Time Fracture Process Fracture Mode Quartz Crystal Electron Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    P. Braunlich and J. T. Dickinson; “Proceedings of 6th International Symposium on Exoelectron Emission and Application” Rostock, East Germany (1979) 9Google Scholar
  2. 2).
    H. Glaefeke; Exoemission in “Thermally Stimulated Relaxation in Solids” ed. P. Braunlich, Springer Verlag, Berlin, (1983)Google Scholar
  3. 3).
    J. T. Dickinson, M. K. Park, E. E. Donaldson and L. C. Jensen; J. Vac. Sci. Technol. 20: 436 (1982)CrossRefGoogle Scholar
  4. 4).
    J. T. Dickinson, L.C. Jensen and A. Jahan-Latibari; J. Vac. Technol. A 2: 1112 (1984)Google Scholar
  5. 5).
    A. V. Poletaev and S. Z. Shmurak; Sov. Phys. Solid State; 26: 2147 (1984)Google Scholar
  6. 6).
    J. T. Dickinson, A. Jahan-Latibari and L. C. Jensen; J. Mater. Sci. 20: 229 (1985)CrossRefGoogle Scholar
  7. 7).
    S. C. Langford, J. T. Dickinson and L.C. Jensen; J. Appl. Phys. 62: 1437 (1987)CrossRefGoogle Scholar
  8. 8).
    J. P. Mathison, S. C. Langford and J. T. Dickinson; J. Appl. Phys. 65: 1923 (1989)CrossRefGoogle Scholar
  9. 9).
    S. Owaki, K. Katagiri, T. Okada, S. Nakahara and K. Sugihara; Adv. Cryog. Eng. Mater. 34: 283 (1988)Google Scholar
  10. 10).
    S. Nakahara, T. Fujita, K. Sugihara, S. Owaki, K. Katagiri and T. Okada; Adv. Cryog. Eng. Mater. 34: 91 (1988)Google Scholar
  11. 11).
    S. Owaki, K. Katagiri, T. Okada, S. Nakahara and K. Sugihara; Adv. Cryog. Eng. Mater. 36: 1361 (1990)Google Scholar
  12. 12).
    S. Nakahara, T. Fujita, K. Sugihara, S. Owaki, K. Katagiri and T. Okada; Adv. Cryog. Eng. Mater. 36: 1201 (1990)Google Scholar
  13. 13).
    S. Nakahara, T. Fujita, K. Sugihara, S. Owaki, K. Katagiri and T. Okada; Jpn. J. Appl. Phys. 24–4: 198 (1985)Google Scholar
  14. 14).
    S. Owaki, K. Katagiri, T. Okada, S. Nakahara and K. Sugihara; “Proceeding of 9th International Symposium on Exoelectron Emission and Application” Wroclaw, Poland (1988) 262Google Scholar
  15. 15).
    S. Nakahara, T. Fujita, K. Sugihara, S. Owaki, K. Katagiri and T. Okada; “Proceeding of 9th International Symposium on Exoelectron Emission and Application” Wroclaw, Poland (1988) 254Google Scholar
  16. 16).
    S. C. Langford, D. L. Doering and J. T. Dickinson; Phys. Rev. Lett. 59: 2795 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Shigehiro Owaki
    • 1
  • Toichi Okada
    • 1
  • Sumio Nakahara
    • 2
  • Kiyoshi Sugihara
    • 2
  1. 1.ISIROsaka UniversityIbaraki, Osaka 567Japan
  2. 2.Dept. Mechanical EngineeringKansai UniversitySuita, Osaka 564Japan

Personalised recommendations