Advertisement

Materials pp 207-215 | Cite as

The Charpy Impact Test as an Evaluation of 4 K Fracture Toughness

  • H. Nakajima
  • K. Yoshida
  • H. Tsuji
  • R. L. Tobler
  • I. S. Hwang
  • M. M. Morra
  • R. G. Ballinger
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 38)

Abstract

A 4 K Charpy test is defined as a Charpy test in which the initial temperature of a specimen is 4 K. Two methods, a glass Dewar method and a flow method, are compared in this study to demonstrate that both provide consistent results as long as initial specimen temperature is the same. An improved correlation between the Charpy absorbed energy and the fracture toughness at 4 K is also examined to clarify the limitation of Charpy test applications at cryogenic temperatures.

Keywords

Fracture Toughness Austenitic Stainless Steel Liquid Helium Flow Method Japanese Industrial Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Tobler, R. P. Reed, I. S. Hwang, M. M. Morra., R. G. Ballinger, H. Nakajima, and S.Shimamoto, CHARPY IMPACT TESTS NEAR ABSOLUTE ZERO, Journal of Testing and Evaluation, Vol. 19, No. 1 (1991), pp. 34–40.CrossRefGoogle Scholar
  2. 2.
    H. Nakajima, K. Yoshida, K. Okuno, M. Oshikiri, E. Tada, and S. Shimamoto, R. Miura, M. Shimada, S. Tone, K. Suemune, T. Sakamoto, and K. Nohara, FRACTURE TOUGHNESS OF NEWLY DEVELOPED STRUCTURAL MATERIALS FOR SUPERCONDUCTING COILS OF FUSION EXPERIMENTAL REACTOR, in: “Advances in Cryogenic Engineering–Materials,” Vol. 32, Plenum Press, New York (1986), pp. 347–354.CrossRefGoogle Scholar
  3. 3.
    I. S. Hwang, M. M. Morra, R. G. Ballinger, H. Nakajima, S. Shimamoto, and R. L. Tobler, CHARPY ABSORBED ENERGY AND JIc AS MEASURES OF CRYOGENIC FRACTURE TOUGHNESS, To be published in Journal of Testing and Evaluation (1991).Google Scholar
  4. 4.
    J. M. Barsom and S. T. Rolfe, CORRELATIONS BETWEEN KIc AND CHARPY V-NOTCH TEST RESULTS IN THE TRANSITION-TEMPERATURE RANGE, in: “Impact Testing of Metals, ASTM STP 466” (1970), pp. 281–302.Google Scholar
  5. 5.
    T. Ito, K. Tanaka, and M. Sato, EFFECT OF PLATE THICKNESS ON BRITTLE FRACTURE INITIATION FROM SURFACE NOTCH IN WELD FUSION LINE AND CORRELATION BETWEEN THE RESULTS OF LARGE SCALE TEST AND THOSE OF CHARPY TEST, Journal of the Society of Naval Architecture and Ocean Engineering, No. 131 (1972), pp. 335–343.CrossRefGoogle Scholar
  6. 6.
    H. Nakajima, K. Yoshida, S. Shimamoto, R. L. Tobler, P. T. Purtscher, and R. P. Reed, ROUND ROBIN TENSILE AND FRACTURE TEST RESULTS FOR AN Fe-22Mn-13Cr-5Ni AUSTENITIC STAINLESS STEEL AT 4 K, in: “Advances in Cryogenic Engineering–Materials”, Vol. 34, Plenum Press, New York (1988), pp. 241–249.Google Scholar
  7. 7.
    H. Nakajima, K. Yoshida, S. Shimamoto, R. L. Tobler, R. P. Reed, R. P. Walsh, and P. T. Purtscher, INTERLABORATORY TENSION AND FRACTURE TOUGHNESS TEST RESULTS FOR CSUS-JN1 (Fe-25Cr-15Ní-0.35N) AUSTENITIC STAINLESS STEEL AT 4 K, in: “Advances in Cryogenic Engineering–Materials”, Vol. 36, Plenum Press, New York (1990), pp. 1069–1076.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • H. Nakajima
    • 1
  • K. Yoshida
    • 1
  • H. Tsuji
    • 1
  • R. L. Tobler
    • 2
  • I. S. Hwang
    • 3
  • M. M. Morra
    • 3
  • R. G. Ballinger
    • 3
  1. 1.Japan Atomic Energy Research InstituteNaka-machi, Ibaraki-kenJapan
  2. 2.National Institute of Standards and TechnologyColoradoUSA
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations