Advertisement

Studies of RF-Superconductivity Properties of Niobium Film-Coated Cavities at CERN

  • C. Benvenuti
  • S. Calatroni
  • I. E. Campisi
  • P. Darriulat
  • C. Durand
  • M. Peck
  • R. Russo
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 43)

Abstract

Extensive tests have been performed on several cavities, operated at 1.5 GHz in the TMoio mode, obtained by sputter-coating niobium on copper, in order to study the physical phenomena responsible for their ultimate performance. Cavities manufactured with the same technique, but resonating at 352 MHz, are in current operation in the CERN Large Electron-Positron Collider LEP.

The measured RF data have been analyzed to extract information about: 1) the BCS resistance properties of each film, 2) the residual resistance of sputtered niobium deposited onto copper cavities manufactured with various techniques, and 3) the influence of trapped magnetic fluxons on the film’s superconducting RF properties.

Several tests have been made also on bulk niobium cavities at 1.5 GHz manufactured through different methods in order to compare and extend the results of the film studies.

Analyses confirm that the sputtered niobium films provide: 1) lower BCS resistance than the bulk, 2) lower sensitivity of the surface resistance to external applied magnetic field, 3) residual resistance comparable to the bulk, once the substrate’s properties are well controlled.

Keywords

Copper Substrate Sulfamic Acid Residual Resistance Large Electron Positron External Applied Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Benvenuti, S. Calatroni, E. Chiaveri, G. Orlandi, and W. Weingarten, Superconducting cavities for particle accelerators, Cryogenics, 34:57 (1994)CrossRefGoogle Scholar
  2. 2.
    H. Padamsee, K. W. Shepard and R. Sundelin, Physics and accelerator applications of RF superconductivity, Ann. Rev. Nucl. Part. Sci. 43 (1993) 635CrossRefGoogle Scholar
  3. 3.
    W. Weingarten, Progress in thin film techniques, Part. Accel. 53:199 (1996)Google Scholar
  4. 4.
    C. Benvenuti, P. Bernard, D. Bloess, G. Cavallari, E. Chiaveri, E. Haebel, N. Hilleret, J. Tückmantel, and W. Weingarten, Superconducting niobium sputter-coated copper cavity modules for the LEP energy upgrade, 1991 IEEE particle accelerator conference San Francisco, CA, USA ; 6 – 9 May 1991 (1023–1025).Google Scholar
  5. 5.
    R. Brinkmann, Status of the design for the TESLA linear collider, 16th Particle Accelerator Conference -PAC 95 Dallas, TX, USA ; 1 – 5 May 1995 (674–676).Google Scholar
  6. 6.
    C. Benvenuti, V. Palmieri, and R. Vaglio, Construction materials for superconducting RF accelerating cavities, 4th Topical Symposium on Superconductivity and Superconducting Materials Technologies, Florence, Italy; 28 June — 4 July 1994 . P Vincenzini, ed., Faenza (1994), p.637.Google Scholar
  7. 7.
    C. Hauviller, Fully hydroformed RF cavities, 1989 IEEE particle accelerator conference Chicago, IL, USA; 20 – 23 Mar 1989, p. 485.Google Scholar
  8. 8.
    V. Palmieri, R. Preciso, V. L. Ruzinov, S. Yu. Stark, I. I. Kulik, J. P. Bacher, J. P. Brächet, H. Fritz, F. Kuttl, and G. Lion, Recent experience with spinning of 1.5 GHz seamless copper monocells, Proceedings of the 7th Workshop on RF Superconductivity, Saclay, 1995, p. 571.Google Scholar
  9. 9.
    G. Orlandi, C. Benvenuti, S. Calatroni, M. Hauer, M and F. Scalambrin, Niobium coatings for 1.5 GHz RF cavities, Part. Accel. 46: 1 (1994).Google Scholar
  10. 10.
    D. C. Mattis and J. Bardeen, Phys. Rev. 111:412 (1958).CrossRefGoogle Scholar
  11. 11.
    A. A. Abrikosov, L. P. GorTcov and I. M. Khalatnikov, Zh. Eks. Teor. Fiz. 35 (1958) 265 and JETP 35:182(1959).Google Scholar
  12. 12.
    J. P. Turneaure, J. Halbritter and H A. Schwettman, The surface impedance of superconductors and normal conductors: the Mattis-Bardeen theory, J. Supercond. 4:341 (1991).CrossRefGoogle Scholar
  13. 13.
    J. P. Carbotte, Properties of boson-exchange superconductors, Rev. Mod. Phys, 62:1027 (1990) and references therein.CrossRefGoogle Scholar
  14. 14.
    J. Halbritter, On surface resistance of superconductors, Z. Phys. 266:209 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • C. Benvenuti
    • 1
  • S. Calatroni
    • 1
  • I. E. Campisi
    • 2
  • P. Darriulat
    • 1
  • C. Durand
    • 3
  • M. Peck
    • 1
  • R. Russo
    • 1
  1. 1.European Organization for Nuclear ResearchCERNGeneva 23Switzerland
  2. 2.Visiting Research AssociateThomas Jefferson National Accelerator FacilityNewport NewsUSA
  3. 3.Laboratori Nazionali di LegnaroIstituto Nazionale di Fisica NucleareLegnaro (Padova)Italy

Personalised recommendations