Advertisement

A New Approach for Thermoacoustic Refrigeration

  • J. H. Xiao
  • Ray Radebaugh
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 43)

Abstract

We suggest a new design configuration for thermoacoustic refrigeration that optimizes the refrigeration effect caused by both the standing wave and the traveling wave. In current thermoacoustic refrigerators the refrigeration effect comes mainly from the standing wave component, in which the phase angle between the pressure and the velocity is 90°. In the orifice pulse tube refrigerator the refrigeration effect comes from the traveling wave component, in which the pressure and the velocity are in phase. By combining these two devices and optimizing the refrigeration effect caused by both the traveling wave and the standing wave components, we may be able to extend the temperature range of the thermoacoustic refrigerator down to the cryogenic range. The resulting device is a thermoacoustic refrigerator with an orifice pulse tube as a cold end expander, or an orifice pulse tube cooler operating near the resonance condition. The new design configuration may have a higher efficiency than that of the orifice pulse tube refrigerator or the thermoacoustic refrigerator in the intermediate temperature range. Another advantage over the pulse tube is the ability to use a driver with a small displacement, since the device is operating near resonance. This paper will discuss the working process, the new configuration, and some preliminary modeling results of the new type of thermoacoustic refrigerator.

Keywords

Phase Angle Standing Wave Wave Component Design Configuration Pulse Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.W. Swift, Thermoacoustic engines and refrigerators, Physics Today (July 1995), p.22Google Scholar
  2. 2.
    G. W. Swift, Thermoacoustic engine, J. Acoust. Soc. Am. 84:1145 (1988)CrossRefGoogle Scholar
  3. 3.
    Ray Radebaugh, Advances in Cryocoolers, “Proc. 16th CEC/ICMC”, Elsevier Science Inc., Oxford, England(1996), p.33Google Scholar
  4. 4.
    J. H. Xiao, Thermoacoustic theory for cyclic flow regenerators, Cryogenics, 32:895 (1992)CrossRefGoogle Scholar
  5. 5.
    J. H. Xiao, Thermoacoustic heat transportation and energy transformation, Part I: Formulation of the problem. Cryogenics, 35:15(1995)CrossRefGoogle Scholar
  6. 6.
    J. H. Xiao, Thermoacoustic heat transportation and energy transformation, Part II: Isothermal wall thermoacoustic effects. Cryogenics, 35:21 (1995)CrossRefGoogle Scholar
  7. 7.
    J. H. Xiao, Thermoacoustic heat transportation and energy transformation, Part III: Adiabatic wall thermoacoustic effects. Cryogenics, 35:27 (1995)CrossRefGoogle Scholar
  8. 8.
    J. H. Xiao, Thennoacoustic theory for regenerative cryocoolers: A case study for a pulse tube refrigerator, “Proc. 7th Int’l Cryocooler Conf.”, Airforce Report PL-CP-93–1001(1993), p.305Google Scholar
  9. 9.
    Ward and G. Swift, Design environment for low-amplitude thennoacoustic engines, Tutorial and User’s Guide, V2.0, Los Alamos National Laboratory (1995), (email to ww@lanl.gov for a copy)Google Scholar
  10. 10.
    K. M. Godshalk, C. Jin, Y. K. Kwong, E. L. Hershberg, G.W. Swift and R. Radebaugh, Characterization of 350 Hz thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure, “Advances in Cryogenic Engineering”, Plenum Press, New York (1997), Vol. 41 p.1411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J. H. Xiao
    • 1
    • 3
  • Ray Radebaugh
    • 2
  1. 1.Cryogenic LaboratoryChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.National Institute of Standards and TechnologyBoulderUSA
  3. 3.Cryogenic Technologies GroupNISTBoulderUSA

Personalised recommendations