Parallel Flow Regenerator for Pulse Tube Cooler Application

  • A. Hofmann
  • S. Wild
  • L. R. Oellrich
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 43)


A single stage double inlet pulse tube refrigerator has been operated with two different types of regenerators, a conventional one, made from 200 mesh stainless steel screens, and a new type made from a stack of Chapaullel channels arranged in 0.1 mm thick stainless steel foils. The overall dimensions of both are the same, but the Chapaullel flow system has only half the void fraction as the mesh type. The initial expectation to get better performance of the cooler with the Chapaullel flow regenerator has not been fulfilled. The no-load temperature of the mesh type system is 26 K, whereas only 33 K could be achieved with the Chapaullel flow regenerator. A more detailed analysis based on data of Kays and London and on numeric studies based on the thermoacoustic theory is given.


Pulse Tube Compactness Factor Circular Duct Pulse Tube Refrigerator Cryogenic Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kays, W.M., London, A.L.: Compact heat exchangers. McGraw-Hill, New York, 1984, 3rd edition.Google Scholar
  2. [2]
    Hendricks, J.B.: A new method for producing perforated plate recuperators. Advances in Cryogenic Engineering, Vol. 41 B, Plenum Press, New York, 1996, p. 1329–1337.CrossRefGoogle Scholar
  3. [3]
    Rawlins, W., Timmerhaus, K.D., Radebaugh, R., Daney, D.E.: Measurement of the performance of a spiral wound polyimide regenerator in a pulse tube refrigerator. Advances in Cryogenic Engineering, Vol. 37 B, Plenum Press, New York, 1992, p. 947–952.CrossRefGoogle Scholar
  4. [4]
    Mitchell, M.P., Yaron, R„, Shokralla, S., Yuan, J., Bradley, P.E., Radebaugh, R.: Etched foil regenerator. Advances in Cryogenic Engineering, Vol. 41 B, Plenum Press, New York, 1996, p. 1339–1346.Google Scholar
  5. [5]
    Bier, W., Schubert, K.: Herstellung und Test von kompakten Mikrowärmeühertragem. Chem.-Ing.-Tech. 61 (1989) Nr.2, S. 172–173 GermanyCrossRefGoogle Scholar
  6. [6]
    Wild, S.: Untersuchung von Mikrowärmeühertragem hei LHe-Temperaturen. Diplomarbeit Universität Karlsruhe, 1992 GermanyGoogle Scholar
  7. [7]
    Hausen, H.: Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. Springer-Verlag, Berlin, 1976, 2. Auflage GermanyGoogle Scholar
  8. [8]
    Xiao, J.H.: Thermoacoustic heat transportation and energy transformation; Part 1: Formulation of the problem. Cryogenics 1995, Vol. 35, p. 15–19.CrossRefGoogle Scholar
  9. [9]
    Wild, S.: Untersuchungen ein- und zweistufiger Pulsrohrkühler. Dissertation Universität Karlsruhe, 1997 (german), and VDI-Berichte, Reihe 19, Nr 105, ISBN 3–18–310519–5, VDI Düsseldorf (1997).Google Scholar
  10. [10]
    Wild, S., Oellrich, L.R., and Hofmann, A.: Mikroregenerator für Gaskältemaschinen, DKV-Tagungsbericht, 23. Jahrgang (1996) (Deutscher Kälte- und Klimatechnischer Verein, Stuttgart), ISBN 3 922 429 73 4 (1996), p. 137–145 GermanyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • A. Hofmann
    • 1
  • S. Wild
    • 2
  • L. R. Oellrich
    • 2
  1. 1.Forschungszentrum Karlsruhe (FZK)/ITPGermany
  2. 2.Inst. für Technische Thermodynamik und KältetechnikUniversität KarlsruheGermany

Personalised recommendations