Abstract
This paper describes the experimental apChapautus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apChapautus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 μm and the 325-mesh stainless steel screen wire diameters were 22.9 urn and 27.9 μm. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross-sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.
Keywords
- Cold Plate
- Heat Leak
- Degradation Factor
- Heat Conduction Loss
- Stainless Steel Screen
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Contribution of the National Institute of Standards and Technology, not subject to copyright in the U.S.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Walker, G., Cry coolers, Plenum Press, New York (1983)
Organ, A. J., “Conductivity for quantifying regenerator thermal shorting,” to be published.
Lee, A.C., “Contact resistance of 500 mesh regenerator screens,” Cryogenics, Vol 34, No. 5 (1994), pp. 451–456.
Schumann, T.E.W., and Voss, V., “Heat Flow Through Granulated Material,” Fuel, Vol. 13 (1934), pp. 249–256.
Takeno., “Thermal and Mechanical Properties of Advanced Cryogenic Materials at Low Temperatures,” Cryogenic Engineering, Journal of the Cryogenic Society of Japan, Vol. 12, No. 3 (1986), pp. 182–187.
Gary, J., Daney, D.E., and Radebaugh, R., “A Computational Model for a Regenerator,” Proc. Third Cryocooler Conference, NBS Special Publication 698, (1985), p. 199.
Gary, J. and Radebaugh, R., “An Improved Numerical Model for Calculation of Regenerator Performance (REGEN3.1),” Proc. Fourth Interagency Meeting on Cryocoolers, David Taylor Research Center, Report DTRC-91/003, (1991), p. 165.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer Science+Business Media New York
About this chapter
Cite this chapter
Lewis, M.A., Kuriyama, T., Kuriyama, F., Radebaugh, R. (1998). Measurement of Heat Conduction through Stacked Screens. In: Kittel, P. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9047-4_202
Download citation
DOI: https://doi.org/10.1007/978-1-4757-9047-4_202
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4757-9049-8
Online ISBN: 978-1-4757-9047-4
eBook Packages: Springer Book Archive