Thermodynamic Properties of Mixtures of Nitrogen, Argon, and Oxygen, Including Air

  • E. W. Lemmon
  • R. T. Jacobsen
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 43)


A mixture model explicit in Helmholtz energy has been developed which is capable of predicting the hermodynamic properties of mixtures containing nitrogen, argon, and oxygen, including air. The calculation for air assumes a ternary mixture of these three components and neglects the presence of water vapor, carbon dioxide and trace elements known to be present in atmospheric air. The Helmholtz energy of the mixture is the sum of the ideal gas contribution, the residual contribution, and the contribution from mixing. The contribution from mixing is given by a single generalized equation which is applied to all mixtures used in this work. The independent variables are the reduced density and reduced temperature. The model may be used to calculate thermodynamic properties of mixtures at various compositions including dew and bubble point properties and critical points. It incorporates the most accurate published equation of state for each pure fluid.

The model may be used to calculate the properties of mixtures generally within the experimental accuracies of the available measured properties. The estimated accuracy of calculated properties is ±0.1% in density, ±0.5% in the speed of sound, and ±1% in heat capacities. Calculated bubble point pressures are generally accurate to within ±1%.


Binary Mixture Ternary Mixture Helmholtz Energy Bubble Point Predictive Nature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.T Jacobsen, S.G. Penoncello, S.W. Beyerlein, W.P. Clarke, and E.W. Lemmon, Fluid Phase Equilib. 79:113(1992).CrossRefGoogle Scholar
  2. 2.
    W.P. Clarke, R.T Jacobsen, E.W. Lemmon, S.G. Penoncello, and S.W. Beyerlein, Int. J. Thermophys. 15(6): 1289 (1994).CrossRefGoogle Scholar
  3. 3.
    E.W. Lemmon, R.T Jacobsen, and S.W. Beyerlein, “Adv. Cryo. Engr.” 37:1107 (1992).CrossRefGoogle Scholar
  4. 4.
    E.W. Lemmon, “Generalized Model for the Prediction of the Thermodynamic Properties of Mixtures Including Vapor-Liquid Equilibrium,” Ph.D. Dissertation, University of Idaho (1996).Google Scholar
  5. 5.
    E.W. Lemmon and R.T Jacobsen, Submitted to Int. J. Thermophys. (1997).Google Scholar
  6. 6.
    R.T Jacobsen, R.B. Stewart, and M. Jahangin, Phys. Chem. Ref. Data 15(2):735 (1986).CrossRefGoogle Scholar
  7. 7.
    R.B. Stewart and R.T Jacobsen, J. Phys. Chem. Ref. Data 18(2):639 (1989).CrossRefGoogle Scholar
  8. 8.
    R. Schmidt and W. Wagner, Fluid Phase Equilib. 19:175 (1985).CrossRefGoogle Scholar
  9. 9.
    E.W. Lemmon, R.T Jacobsen, S.G. Penoncello, and S.W. Beyerlein, “Adv. Cryo. Engr.” 39:1891 (1994).CrossRefGoogle Scholar
  10. 10.
    W. Blanke, Proc. 7th Symp. Thermophys. Prop., A. Cezairlizan, editor, The American Society of Mechanical Engineers, New York (1977), p. 461.Google Scholar
  11. 11.
    J.B. Howley, J.W. Magee, and W.M. Haynes, Int. J. Thermophys. 15(5):801 (1994).CrossRefGoogle Scholar
  12. 12.
    A. Kozlov, “Experimental Investigation of the Specific Volumes of Air in the 20–600°C Temperature Range and 20–700 Bar Pressure Range,” Dissertation, Moscow Power Engineering Institute (1968).Google Scholar
  13. 13.
    A. Michels, T. Wassenaar, and W. van Seventer, Appl. Sci. Res. 4:52 (1954).Google Scholar
  14. 14.
    A. Michels, T. Wassenaar, J.M.H. Levelt Sengers, and W. de Graaf, Appl. Sci. Res. 4:381 (1954).Google Scholar
  15. 15.
    I.A. Rogovaya and M.G. Kaganer, Russ. J. Phys. Chem. 34(9):917 (1960).Google Scholar
  16. 16.
    H. Romberg, “Neue Messungen der Thermischen Zustandsgrossen der Luft bei tiefen Temperaturen und die Berechnung der Kalorischen Zustandsgrossen mit Hilfe des Kihara-Potentials,” VDI-Forsch.-Heft 543, Dusseldorf: VDI-Verlag (1971).Google Scholar
  17. 17.
    A.A. Vasserman, E.A. Golovskii, E.P. Mitsevich, and V.A. Tsymarnyi, “Measurement of the Density of Air at Temperatures of 78 to 190 K up to Pressures of 600 bars,” VINITI Deposition No. 2953, Odessa Institute of Marine Engineering, Ukraine (1976).Google Scholar
  18. 18.
    J.W. Magee, Int. J. Thermophys. 15(5):849 (1994).CrossRefGoogle Scholar
  19. 19.
    M.B. Ewing and A.R.H. Goodwin, J. Chem. Thermodyn. 25:423 (1993).CrossRefGoogle Scholar
  20. 20.
    A. Van Itterbeek and W. De Rop, Appl. Sci. Res. 6(A):21 (1955).Google Scholar
  21. 21.
    B.A. Younglove and N.V. Frederick, Int. J. Thermophys. 13(6): 1033 (1992).CrossRefGoogle Scholar
  22. 22.
    Yu.P. Blagoi and N.C. Rudenko, Izv. Vyssh. Uchebn. Zaved. Fiz. 6:145 (1958).Google Scholar
  23. 23.
    H.F.P. Knaap, M. Knoester, and J.J.M. Beenakker, Physica 27:309 (1961).CrossRefGoogle Scholar
  24. 24.
    J.P. Kuenen, T. Verschoyle, and A.T. Van Urk, Proceedings of the Royal Academy of Amsterdam 26:49 (1922).Google Scholar
  25. 25.
    R.A.H. Pool, G. Saville, T.M. Herrington, B.D.C. Shields, and L.A.K. Staveley, Trans. Faraday Soc. 58:1692 (1962).CrossRefGoogle Scholar
  26. 26.
    G.T. Armstrong, J.M. Goldstein, and D.E. Roberts, J. Res. Natl Bur. Stand. 55(5):265 (1955).CrossRefGoogle Scholar
  27. 27.
    A.H. Cockett, Proc. R. Soc. London A239:76 (1957).CrossRefGoogle Scholar
  28. 28.
    F. Din, Trans. Faraday Soc. 56:668 (1960).CrossRefGoogle Scholar
  29. 29.
    A.G. Duncan and L.A.K. Staveley, Trans. Faraday Soc. 62:548 (1966).CrossRefGoogle Scholar
  30. 30.
    M.J. Hiza, A.J. Kidnay, and W.M. Haynes, “Liquid-Vapor Equilibria in Binary Systems Containing Nitrogen, Oxygen, and Argon between 63 and 100 K”, NIST, Boulder, CO, unpublished data (1990).Google Scholar
  31. 31.
    G.M. Wilson, P.M. Silverberg, and M.G. Zellner, Paper Q-6 in: “Adv. Cryo. Engr.” (1965), p. 192.Google Scholar
  32. 32.
    R.W. Jr. Crain and R. Sonntag, “Adv. Cryo. Engr.” 11:379 (1966).CrossRefGoogle Scholar
  33. 33.
    N.D. Kosov and LS. Brovanov, Inz.-Fiz. Zh. 36(4):627 (1979).Google Scholar
  34. 34.
    V.Ya. Maslennikova, A.N. Egorov, and D.S. Tsiklis, Russ. J. Phys. Chem. 53(6):919 (1979).Google Scholar
  35. 35.
    A.M. Palavra, “Effect of Pressure and Temperature on Excess Properties in the System Argon-Nitrogen,” M.S. Thesis, Instituto Superior Teenico Universidade Tecnica De Lisboa(1979).Google Scholar
  36. 36.
    A.A. Ricardo, S.F. Barreiros, M. Nunes da Ponte, G.M.N. Albuquerque, and J.CG. Calado, J. Chem. Thermodyn. 24:1281 (1992).CrossRefGoogle Scholar
  37. 37.
    P.W. Townsend, “Pressure-Volume-Temperature Relationships of Binary Gaseous Mixtures,” Ph.D. Dissertation, Faculty of Pure Science, Columbia University, New York (1956).Google Scholar
  38. 38.
    P. Zandbergen and J.J.M. Beenakker, Physica 33(2):343 (1967).CrossRefGoogle Scholar
  39. 39.
    V.G. Fastovskii and Yu.V. Petrovskii, Zh. Fiz. Khim., Russ. J. Phys. Chem. 30:76 (1956).Google Scholar
  40. 40.
    R.C. Miller, A.J. Kidnay, and M.J. Hiza, AIChE J. 19(1): 145 (1973).CrossRefGoogle Scholar
  41. 41.
    G.B. Narinskii, Russ. J. Phys. Chem. 40(9):1093 (1966).Google Scholar
  42. 42.
    P.L. Thorpe, Trans. Faraday Soc. 64(549):2273 (1968).CrossRefGoogle Scholar
  43. 43.
    Y. Saji and T. Okuda, “Adv. Cryo. Engr.” 10:209 (1965).Google Scholar
  44. 44.
    I. Burn and F. Din, Trans. Faraday Soc. 58(475): 1341 (1962).CrossRefGoogle Scholar
  45. 45.
    A.M. Clark, F. Din, and J. Robb, Proc. R. Soc. London A221:517 (1954).CrossRefGoogle Scholar
  46. 46.
    G.B. Narinskii, Kislorodnyi, 10(3):9 (1957).Google Scholar
  47. 47.
    M. Yorizane, S. Yoshimura, H. Masuoka, A. Toyama, Y. Nakako, and I. Funada, Chem. Eng. Sci. 33:641 (1978).CrossRefGoogle Scholar
  48. 48.
    I. Funada, S. Yoshimura, H. Masuoka, and M. Yorizane, “Adv. Cryo. Engr.” 27:893 (1982).Google Scholar
  49. 49.
    G.B. Narinskii, Zh. Fiz. Khim. 43(2):408 (1969).Google Scholar
  50. 50.
    J. Weishaupt, Angew. Chem., Ausg. B 20(12):321 (1948).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • E. W. Lemmon
    • 1
  • R. T. Jacobsen
    • 1
  1. 1.Center for Applied Thermodynamic StudiesUniversity of IdahoMoscowUSA

Personalised recommendations