Advertisement

Current Status of Thermodynamic Properties of Cryogenic Fluids

  • R. T. Jacobsen
  • S. G. Penoncello
  • E. W. Lemmon
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 43)

Abstract

A review of the current status of mathematical models and correlations for the calculation of thermodynamic properties of cryogenic fluids is presented. This review provides the practicing engineer and interested scientist with information on the thermodynamic properties of air, argon, carbon monoxide, deuterium, ethane, fluorine, helium, hydrogen, krypton, methane, neon, nitrogen, oxygen, parahydrogen and xenon. We have included the most accurate formulation for each fluid available at this time. We have referenced the original works that contain details of the mathematical models and correlation methods, and provide the user with sources of information about using the computer formulations for applications. We have included information about Internet access to computer programs for thermodynamic properties of the fluids. Estimates of the accuracies of properties calculated using the available computer models are also included.

Keywords

Thermodynamic Property Thermophysical Property Fundamental Equation Helmholtz Energy Isobaric Heat Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. T Jacobsen, S. G. Penoncello, and E. W. Lemmon, “Thermodynamic Properties of Cryogenic Fluids,” Plenum Press, New York (1997).CrossRefGoogle Scholar
  2. 2.
    D. Zudkevitch, Imprecise data impacts plant design and operation, Hydrocarbon Processing 54:97 (1975).Google Scholar
  3. 3.
    D. Zudkevitch and R. D. Gray, Jr., Impact of fluid properties on the design of equipment for handling LNG, in: “Adv. Cryo. Engr.”, Plenum Press, New York (1975), 20:103.Google Scholar
  4. 4.
    J. V. Sengers and M. Klein, ed., “The Technological Importance of Accurate Thermophysical Property Information,” Special Publication 590 Nat. Bur. Stand. (U.S.) (1980).Google Scholar
  5. 5.
    P. S. Chappelear, R. J. J. Chen and D. G. Elliot, Pick K correlations carefully, Hydrocarbon Processing 56:215 (1977).Google Scholar
  6. 6.
    W. M. Haynes, A. J. Kidnay, N. A. Olien, and M. J. Hiza, Status of thermophysical properties data for pure fluids and mixtures of cryogenic interest, in: “Adv. Cryo. Engr.,” Plenum Press, New York (1984), 27:919.CrossRefGoogle Scholar
  7. 7.
    F. Din, “Thermodynamic Functions of Gases: Volume 2. Air, Acetylene, Ethylene, Propane and Argon, Volume 3. Ethane, Methane, and Nitrogen,” Butterworths, London (1962).Google Scholar
  8. 8.
    R. B. Stewart and K. D. Timmerhaus, The correlation of thermodynamic properties of cryogenic fluids, in: “Adv. Cryo. Engr.,” Plenum Press, New York (1964), 9:20.Google Scholar
  9. 9.
    D. E. Diller, Thermophysical properties data research on compressed and liquefied gases at the NBS Cryogenics Division, in: “Adv. Cryo. Engr.,” Plenum Press, New York (1976), 21:522.Google Scholar
  10. 10.
    R. T Jacobsen, R. B. Stewart, M. Jahangiri, and S. G. Penoncello, A new fundamental equation for thermodynamic property correlations, in “Adv. Cryo. Engr.,” Plenum Press, New York (1986), 31:1161.CrossRefGoogle Scholar
  11. 11.
    S. Tang, G. X. Jin, and J. V. Sengers, Thermodynamic properties of 1, 1, 1, 2-tetrafluoroethane (R134a) in the critical region, Int. J. Thermophys. 12(3):515 (1991).CrossRefGoogle Scholar
  12. 12.
    J. V. Sengers, Effects of critical fluctuations on the thermodynamic and transport properties of supercritical fluids, in: “Supercritical Fluids,” E. Kiran and J. M. H. Levelt Sengers, eds., Kluwer, Dordrecht (1994), p. 231.CrossRefGoogle Scholar
  13. 13.
    E. W. Lemmon, R. T Jacobsen, S. G. Penoncello, and S. W. Beyerlein, Computer programs for the calculation of thermodynamic properties of cryogens and other fluids, in: “Adv. Cryo. Engr.,” Plenum Press, New York (1994), 39:1891.CrossRefGoogle Scholar
  14. 14.
    E. W. Lemmon, R. T Jacobsen, S. G. Penoncello, and S. W. Beyerlein, “Computer Programs for Calculating Thermodynamic Properties of Fluids of Engineering Interest, Version 4.2 and 4.2 W,” CATS Report 97–1, University of Idaho, Moscow, Idaho (1997).Google Scholar
  15. 15.
    R. T. Jacobsen, S. G. Penoncello, S. W. Beyerlein, W. P. Clarke, and E. W. Lemmon, A thermodynamic property formulation for air, Fluid Phase Equilibria 79:113 (1992).CrossRefGoogle Scholar
  16. 16.
    R. B. Stewart, R. B. and R. T Jacobsen, Thermodynamic properties of argon from the triple point to 1200 K at pressures to 1000 MPa, J. Phys. Chem. Ref. Data 18(2):639 (1989).CrossRefGoogle Scholar
  17. 17.
    D. G. Friend, M. L. Huber, and J. S. Gallagher, Thermophysical property computer packages from NIST, in: “Computerized Thermophysical Property Packages, American Society of Mechanical Engineers,” S. G. Penoncello, ed., Symposium Proceedings, (1992), HTD Vol. 225:13.Google Scholar
  18. 18.
    D. G. Friend, H. Ingham, and J. F. Ely, Thermophysical properties of ethane, J. Phys. Chem. Ref. Data 20(2):275 (1991).CrossRefGoogle Scholar
  19. 19.
    K. M. de Reuck, “International Thermodynamic Tables of the Fluid State-11 Fluorine,” International Union of Pure and Applied Chemistry, Chemical Data Series, Pergamon Press, Oxford (1990).Google Scholar
  20. 20.
    R. D. McCarty and V. D. Arp, A new wide range equation of state for helium, in: “Adv. Cryo. Engr.,” Plenum Press, New York (z), 35:1465.Google Scholar
  21. 21.
    R. D. McCarty, “Hydrogen, Technological Survey — Thermophysical Properties,” NASA SP-3089, National Aeronautics and Space Administration (1975).Google Scholar
  22. 22.
    J. Juza and O. Sifner, Modified equation of state and formulation of thermodynamic properties of krypton in a canonical form in the range from 120 to 423 K and 0 to 300 MFa, Acta Technica CSAV 1:1–32 (1976).Google Scholar
  23. 23.
    U. Setzmann and W. Wagner, A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa, J. Phys. Chem. Ref. Data 20(6):1061 (1991).CrossRefGoogle Scholar
  24. 24.
    R. S. Katti, “Thermodynamic Properties of Neon, From the Triple Point to 700 K with Pressures up to 700 MPa,” M.S. Thesis, University of Idaho, Moscow, Idaho (1985).Google Scholar
  25. 25.
    R. T Jacobsen, R. B. Stewart, and M. Jahangiri, Thermodynamic properties of nitrogen from the freezing line to 2000 K at pressures to 1000 MPa, J. Phys. Chem. Ref. Data 15(2):735 (1986).Google Scholar
  26. 26.
    R. Schmidt and W. Wagner, A new form of the equation of state of pure substances and its applications to oxygen, Fluid Phase Equilibria 19:175, 1985.CrossRefGoogle Scholar
  27. 27.
    B. A. Younglove, Thermophysical properties of fluids, J. Phys. Chem. Ref. Data 11(1):4 (1982).Google Scholar
  28. 28.
    O. Sifner and J. Klomfar, Thermodynamic properties of xenon from the triple point to 800 K with pressures up to 350 MPa, J. Phys. Chem. Ref. Data (1):63 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. T. Jacobsen
    • 1
  • S. G. Penoncello
    • 1
  • E. W. Lemmon
    • 1
  1. 1.Center for Applied Thermodynamic Studies, College of EngineeringUniversity of IdahoMoscowUSA

Personalised recommendations