Skip to main content

Investigation of Lattice Surface Layers by Scanning Probe Microscopy

  • Chapter
Advances in Bacterial Paracrystalline Surface Layers

Part of the book series: NATO ASI Series ((NSSA,volume 252))

  • 75 Accesses

Abstract

Scanning probe microscopy (SPM) is emerging as an important complementary technique to conventional microscopy for high-resolution surface investigation (Wickramasinghe, 1990). In SPM, no lenses are used and the image is formed by a finely tipped probe that scans the specimen surface (see Fig. 1). Using this technique, direct quantitative analysis of a specimen’s surface topology, electronic structure, as well as other physical properties are possible in vacuum, gaseous, or liquid environments. Two types of SPM, scanning tunneling microscopy (STM; Binning et al., 1982), and atomic force microscopy, (AFM; Binning et al., 1986) image topographical details on biological surfaces to nanometer resolution. In STM, conductivity is an important factor in image formation since a tunneling current is established between the microscope tip and the surface under study. However, conduction through biological surfaces is a complex process (Spong et al., 1989; Travaglini et al., 1988), so these surfaces are often prepared for STM imaging by overlaying them with a conductive film Such films tend to obscure structural detail and further progress is needed in the development of conductive fine-grained films suitable for high resolution work (Wepf et al., 1991; Amrein et al., 1991). The overall design of the AFM is based on that of the STM but the probe used is a force sensor which is mounted on a cantilever to measure interatomic attractive/repulsive forces (Burnham et al., 1991). This important operational difference enables the native topology of uncoated surfaces to be imaged. Biological applications of STM/AFM have been largely devoted to topographical analysis, but reports of chemical differentiation by tunneling spectroscopy (Spong et al., 1989), controlled ‘nanodissection’ of biological deposits by AFM (Hoh et al., 1991; Henderson, 1992), and AFM imaging of polymerizing macromolecules under water (Drake et al.,1989) have also been published. For recent reviews of biological applications of SPM see Engel, 1991; Edstrom et al., 1990; Blackford et al., 1991a; and Hansma et al., 1988.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amrein, M., Wang, Z., and Guckenberger, R., 1991, Comparative study of a regular protein layer by scanning tunneling microscopy and transmission electron microscopy, J. Vac. Sci. Technol. 9B: 1276.

    Article  CAS  Google Scholar 

  • Baumeister, W., and Kubier, O., 1978, Topographical study of the cell surface of Micrococcus radiodurans, Proc. Natl. Acad. Sci. USA 75: 5525.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W., Barth, M., Hegerl, R., Guckenberger, R., Hahn, M., and Saxton, W.O., 1986, Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans, J. Mol. Biol. 187: 241.

    Article  PubMed  CAS  Google Scholar 

  • Beveridge, T.J., Stewart, M., Doyle, R.J., and Sprott, G.D., 1985, Unusual stability of the Methanospirillum hungatei sheath, J. Bacteriol. 162: 728.

    PubMed  CAS  Google Scholar 

  • Beveridge, T.J., Southam, G., Jericho, M.H., and Blackford, B.L, 1990, High resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy, J. Bacteriol. 172: 6589.

    PubMed  CAS  Google Scholar 

  • Beveridge, T.J., Sprott, G.D., and Whippey, P., 1991, Ultrastructure, inferred porosity, and Gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium, J. Bacteriol. 173: 130.

    PubMed  CAS  Google Scholar 

  • Beveridge, T.J., Harris, B.J., and Sprott, G.D., 1987, Septation and filament splitting in Methanospirillum hungatei, Can. J. Microbiol. 33: 725.

    Article  Google Scholar 

  • Binning, G., Rohrer, H., Gerber, Ch., and Weibel, E., 1982, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49: 57.

    Article  CAS  Google Scholar 

  • Binnig, G., Quate, C.F., and Gerber, Ch., 1986, Atomic force microscope, Phys. Rev. Lett. 56: 930.

    Article  PubMed  Google Scholar 

  • Blackford, B.L, Jericho, M.H., and Mulhern, P.J., 1991a, A review of scanning tunneling microscope and atomic force microscope imaging of large biological structures:Problems and prospects, Scanning Microsc. 5: 907.

    Google Scholar 

  • Blackford, B.L, Jericho, M.H., Mulhern, P.J., Frame, C., Southam, G., and Beveridge, T.J., 1991b, Scanning tunneling microscope imaging of hoops from the cell sheath of the bacteria Methanospirillum hungatei and atomic force microscope imaging of complete sheaths, J. Vac. Sci. Technol. B9: 1242.

    Article  Google Scholar 

  • Blackford, B.L, Watanabe, M.O., Dahn, D.C., Jericho, M.H., Southam, G. and Beveridge, T.J., 1989, The imaging of the complete biological structure with the scanning tunneling microscope, Ultramicroscopy 27: 427.

    Article  Google Scholar 

  • Blaurock, A.E., and Stoeckenius, W., 1971, Structure of the purple membrane, Nature New Biology 233: 152.

    Article  PubMed  CAS  Google Scholar 

  • Burnham, N.A., Colton, R.J., and Pollock, H.M., 1991, Interpretation issues in force microscopy, J. Vac. Sci. Technol. A9: 2548.

    Google Scholar 

  • Butt, H.J., Downing, K.H., and Hansma, P.K., 1990, Imaging the membrane protein bacteriorhodopsin with the atomic force microscope, Biophys. J. 58: 1473.

    Article  PubMed  CAS  Google Scholar 

  • Clemmer, C., and Beebe, T., 1991, Graphite: a mimic for DNA and other biomolecules in scanning tunneling microscope studies, Science 251: 640.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, D.D. and Bustamante, C., 1989, Images of single stranded nucleic acids by scanning tunnelling microscopy, Nature 342: 204.

    Article  PubMed  CAS  Google Scholar 

  • Drake, B., Prater, C.B., Weisenhorn, AL, Gould, S.A.C., Albrecht, T.R., Quate, C.F., Cannell, D.S., Hansma, H.G., and Hansma, P.K., 1989, Imaging crystals, polymers and processes in water with the atomic force microscope, Science 243: 1586.

    Article  PubMed  CAS  Google Scholar 

  • Edstrom, R.D., Yang, X., Lee, G., Evans, D.F., 1990, Viewing molecules with scanning tunneling microscopy and atomic force microscopy, Federation of American Societies for Experimental Biology (FASEB) J. 4: 3144.

    CAS  Google Scholar 

  • Egger, M., Ohnesorge, F., Weisenhorn, AL, Heyn, S.P., Drake, B., Prater, C.B., Gould, S.A.C., Hansma, P.K, and Gaub, H.E., 1990, Wet lipid-protein membranes imaged at submolecular resolution by atomic force microscopy, J. Struct. Biol. 103: 89.

    Article  CAS  Google Scholar 

  • Engel, A, 1991, Biological applications of scanning probe microscopes, Annu. Rev. Biophys. Biophys. Chem. 20: 79.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, KA, Whitfield, S.L, Thomson, R.E., Yanagimoto, K-C., Gustafsson, M.G.L, and Clarke, J., 1990, Measuring changes in membrane thickness by scanning tunneling microscopy, Biochim. Biophys. Acta. 1023: 325.

    Article  PubMed  CAS  Google Scholar 

  • Golovichenko, J.A., 1986, The tunneling microscope: a new look at the atomic world, Science 232: 48.

    Article  Google Scholar 

  • Gould, S.A.C., Drake, B., Prater, C.B., Weisenhorn, A.L, Manne, S., Hansma, H.G., Hansma, P.K., Massie, J., Longmire, M., Elings, V., Dixon Northern, B., Mukergee, B., Peterson, C. M., Stoeckenius, W., Albrecht, T.R., and Quate, C.F., 1990, From atoms to integrated circuit chips, blood cells and bacteria with the atomic force microscope, J. Vac. Sci. Technol. A8: 369.

    Article  CAS  Google Scholar 

  • Guckenberger, R., Wiegrabe, W., Hillebrand, A., Hartmann, T., Wang, Z., and Baumeister, W., 1989, Scanning tunneling microscopy of a hydrated bacterial surface protein, Ultramicroscopy 31: 327.

    Article  CAS  Google Scholar 

  • Guckenberger, R., Hacker, B., Hartmann, T., Scheybani, T., Wang, Z., Wiegrabe, W., and Baumeister, W., 1991, Imaging of uncoated purple membrane by scanning tunneling microscopy, J. Vac. Sci. Technol. B9: 1227.

    Google Scholar 

  • Hansma, P. K., Elings, V.B., Marti, O., and Bracker, C.E., 1988, Scanning tunneling microscopy and atomic force microscopy: application to biology and technology, Science 242: 209.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E., and Downing, K.H., 1990, A model for the structure of bacteriorhodopsin based on high resolution electron cryo-microscopy, J. Mol. Biol. 213: 899.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, E., 1992, Imaging and nanodissection of individual supercoiled plasmids by atomic force microscopy, Nucleic Acids Res. 20: 445.

    Article  PubMed  CAS  Google Scholar 

  • Hoh, J.H., Lal, R., John, S.A., Revel, J.-P., and Arnsdorf, M.F., 1991, Atomic force microscopy and dissection of gap junctions, Science 253: 1405.

    Article  PubMed  CAS  Google Scholar 

  • Jericho, M.H., Blackford, B.L, and Dahn, D.C., 1989, Scanning tunneling microscope imaging technique for weakly bonded surface deposits, J. Appl. Phys. 65: 5237.

    Article  Google Scholar 

  • Keller, R.W., Dunlap, D.D., Bustamante, C., Keller, K.J., Garcia, R.G., Gray, C., and Maestre, M.F., 1990, Scanning tunneling microscopy images of metal-coated bacteriophages and uncoated, double stranded DNA, J. Vac. Sci. Technol. A8: 706.

    Article  CAS  Google Scholar 

  • Michel, B. and Travaglini, G., 1988, An STM for biological applications:bioscope, J.Microsc. 152: 681.

    Article  Google Scholar 

  • Mulhern, P.J., Blackford, B.L, Jericho, M.H., Southam, G., and Beveridge, T.J., 1992, AFM and STM studies of the interaction of antibody with the S-layer sheath of the archaeobacterium Methanospirillum hungatei, Ultramicroscopy 4244: 1214.

    Article  Google Scholar 

  • Oesterhelt, D., and Stoeckenius, W., 1971, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature New Biology 233: 149.

    PubMed  CAS  Google Scholar 

  • Oesterhelt, D., and Stoeckenius, W., 1973, Functions of a new membrane photoreceptor, Proc. Nat. Acad. Sci. USA 70: 2853.

    Article  PubMed  CAS  Google Scholar 

  • Ohnesorge, F., Heckl, W.M., Haberle, W., Pum, D., Sara, M., Schindler, H., Schilcher, K., Kiener, A., Smith, D.P.E., Sleytr, U.B., and Binnig, G., 1992, Scanning force microscopy studies of the S-layers from Bacillus coagulans E3866, Bacillus sphaericus CCM2177 and of an antibody binding process, Ultramicroscopy 42–44: 1236.

    Google Scholar 

  • Reiss, G., Vancea, J., Wittmann, H., Zweck, J., and Hoffmann, H., 1990, Scanning tunneling microscopy on rough surfaces: Tip-shape-limited resolution, J. Appl. Phys. 67: 1156.

    Article  CAS  Google Scholar 

  • Salmeron, M., Beebe, T., Odriozola, J., Wilson, T., Ogletree, D.F., and Siekhaus, W., 1990, Imaging of biomolecules with the scanning tunneling microscope:problems and prospects, J. Vac. Sci. Technol. A8: 635.

    CAS  Google Scholar 

  • Salmeron, M., Ogletree, D.F., Ocal, C., Wang, H.-C, Neubauer, G., Kolbe, W., and Meyers, G., 1991, Tip-surface forces during imaging by scanning tunneling microscopy, J. Vac. Sci. Technol. B9: 1347.

    Article  CAS  Google Scholar 

  • Smith, D.P.E., Bryant, A., Quate, C.F., Rabe, J.P., Gerber, Ch., and Swalen, J.D., 1987, Images of a lipid bilayer at molecular resolution by scanning tunneling microscopy, Proc. NatL Acad. Sci. USA 84: 969.

    Article  PubMed  CAS  Google Scholar 

  • Southam, G., Firtel, M., Blackford, B.L., Jericho, M.H., Xu, W., Mulhern, P.J., and Beveridge, T. J., 1992, Transmission electron microscopy, scanning tunneling microscopy and atomic force micoscopy of the cell envelope layers of the archaeobacterium Methanospirillum hungatei GP1, J. Bacteriol.,in press.

    Google Scholar 

  • Spong, J.K., Mizes, H.A., LaComb Jr., L.J., Dovek, M.M., Frommer, J.E., and Foster, J.S., 1989, Contrast mechanism for resolving organic molecules with tunnelling microscopy, Nature 338: 137.

    Article  CAS  Google Scholar 

  • Sprott, G.D., Beveridge, T.J., Patel, G.B., and Ferrante, G., 1986, Sheath disassembly in Methanospirillum hungatei GP1. Can. J. Microbiol. 32: 847.

    Article  CAS  Google Scholar 

  • Stemmer, A., Engel, A., Haring, R., Reichelt, R., and Aebi, U., 1988, Scanning tunneling microscope with integrated 2-axes heterodyne interferometer and light-microscope, Ultramicroscopy 25: 171.

    Article  Google Scholar 

  • Stemmer, A., Hefti, A., Aebi, U., and Engel, A., 1989, Scanning tunneling and transmission electron microscopy on identical areas of biological specimens, Ultramicroscopy 30: 263.

    Article  PubMed  CAS  Google Scholar 

  • Stemmer, A., and Engel, A., 1990, Imaging biological macromolecules by STM: quantitative interpretation of topographs, Ultramicroscopy 34: 129.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, M., Beveridge, T.J., and Sprott, G.D., 1985, Crystalline order to high resolution in the sheath of Methanospirillum hungatei:a cross-beta structure, J. Mol. Biol. 183: 509.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, B.G., Murray, R.G.E., and Boyce, J.F., 1982, The association of the surface array and the outer membrane of Deinococcus radiodurans, Can. J. Microbiol. 28: 1081.

    Article  CAS  Google Scholar 

  • Travaglini, G., Rohrer, H., Stoll, E., Amrein, M., Stasiak, A., Sogo, J., and Gross, H., 1988, Scanning tunneling microscopy of recA-DNA complexes, Physica Scripta. 38: 309.

    Article  CAS  Google Scholar 

  • Wepf, R., Amrein, M., Burkli, U., and Gross, H., 1991, Platinum Iridium Carbon -a high-resolution shadowing material for TEM, STM and SEM of biological macromolecular structures, J. Microsc. 163: 51.

    Article  PubMed  CAS  Google Scholar 

  • Wickramasinghe, H.K., 1990, Scanning probe microscopy: Current status and future trends, J. Vac. Sci. Technol. A8: 363.

    Article  CAS  Google Scholar 

  • Worchester, D.L., Miller, R.G., and Bryant, P.J., 1988, Atomic force microscopy of purple membranes, J. Microsc. 152: 817.

    Article  Google Scholar 

  • Worchester, D.L., Kim, H.S., Miller, R.G., and Bryant, P.J., 1990, Imaging bacteriorhodopsin lattices in purple membranes with atomic force microscopy, J. Vac. Sci. Technol. A8: 403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Firtel, M. et al. (1993). Investigation of Lattice Surface Layers by Scanning Probe Microscopy. In: Beveridge, T.J., Koval, S.F. (eds) Advances in Bacterial Paracrystalline Surface Layers. NATO ASI Series, vol 252. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9032-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9032-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9034-4

  • Online ISBN: 978-1-4757-9032-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics