Advertisement

Investigation of Lattice Surface Layers by Scanning Probe Microscopy

  • Max Firtel
  • Gordon Southam
  • Terry J. Beveridge
  • Wei Xu
  • Manfred H. Jericho
  • Brad L. Blackford
  • Peter J. Mulhern
Chapter
Part of the NATO ASI Series book series (NSSA, volume 252)

Abstract

Scanning probe microscopy (SPM) is emerging as an important complementary technique to conventional microscopy for high-resolution surface investigation (Wickramasinghe, 1990). In SPM, no lenses are used and the image is formed by a finely tipped probe that scans the specimen surface (see Fig. 1). Using this technique, direct quantitative analysis of a specimen’s surface topology, electronic structure, as well as other physical properties are possible in vacuum, gaseous, or liquid environments. Two types of SPM, scanning tunneling microscopy (STM; Binning et al., 1982), and atomic force microscopy, (AFM; Binning et al., 1986) image topographical details on biological surfaces to nanometer resolution. In STM, conductivity is an important factor in image formation since a tunneling current is established between the microscope tip and the surface under study. However, conduction through biological surfaces is a complex process (Spong et al., 1989; Travaglini et al., 1988), so these surfaces are often prepared for STM imaging by overlaying them with a conductive film Such films tend to obscure structural detail and further progress is needed in the development of conductive fine-grained films suitable for high resolution work (Wepf et al., 1991; Amrein et al., 1991). The overall design of the AFM is based on that of the STM but the probe used is a force sensor which is mounted on a cantilever to measure interatomic attractive/repulsive forces (Burnham et al., 1991). This important operational difference enables the native topology of uncoated surfaces to be imaged. Biological applications of STM/AFM have been largely devoted to topographical analysis, but reports of chemical differentiation by tunneling spectroscopy (Spong et al., 1989), controlled ‘nanodissection’ of biological deposits by AFM (Hoh et al., 1991; Henderson, 1992), and AFM imaging of polymerizing macromolecules under water (Drake et al.,1989) have also been published. For recent reviews of biological applications of SPM see Engel, 1991; Edstrom et al., 1990; Blackford et al., 1991a; and Hansma et al., 1988.

Keywords

Atomic Force Microscopy Scanning Tunneling Microscopy Scan Probe Microscopy Outer Face Purple Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amrein, M., Wang, Z., and Guckenberger, R., 1991, Comparative study of a regular protein layer by scanning tunneling microscopy and transmission electron microscopy, J. Vac. Sci. Technol. 9B: 1276.CrossRefGoogle Scholar
  2. Baumeister, W., and Kubier, O., 1978, Topographical study of the cell surface of Micrococcus radiodurans, Proc. Natl. Acad. Sci. USA 75: 5525.PubMedCrossRefGoogle Scholar
  3. Baumeister, W., Barth, M., Hegerl, R., Guckenberger, R., Hahn, M., and Saxton, W.O., 1986, Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans, J. Mol. Biol. 187: 241.PubMedCrossRefGoogle Scholar
  4. Beveridge, T.J., Stewart, M., Doyle, R.J., and Sprott, G.D., 1985, Unusual stability of the Methanospirillum hungatei sheath, J. Bacteriol. 162: 728.PubMedGoogle Scholar
  5. Beveridge, T.J., Southam, G., Jericho, M.H., and Blackford, B.L, 1990, High resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy, J. Bacteriol. 172: 6589.PubMedGoogle Scholar
  6. Beveridge, T.J., Sprott, G.D., and Whippey, P., 1991, Ultrastructure, inferred porosity, and Gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium, J. Bacteriol. 173: 130.PubMedGoogle Scholar
  7. Beveridge, T.J., Harris, B.J., and Sprott, G.D., 1987, Septation and filament splitting in Methanospirillum hungatei, Can. J. Microbiol. 33: 725.CrossRefGoogle Scholar
  8. Binning, G., Rohrer, H., Gerber, Ch., and Weibel, E., 1982, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49: 57.CrossRefGoogle Scholar
  9. Binnig, G., Quate, C.F., and Gerber, Ch., 1986, Atomic force microscope, Phys. Rev. Lett. 56: 930.PubMedCrossRefGoogle Scholar
  10. Blackford, B.L, Jericho, M.H., and Mulhern, P.J., 1991a, A review of scanning tunneling microscope and atomic force microscope imaging of large biological structures:Problems and prospects, Scanning Microsc. 5: 907.Google Scholar
  11. Blackford, B.L, Jericho, M.H., Mulhern, P.J., Frame, C., Southam, G., and Beveridge, T.J., 1991b, Scanning tunneling microscope imaging of hoops from the cell sheath of the bacteria Methanospirillum hungatei and atomic force microscope imaging of complete sheaths, J. Vac. Sci. Technol. B9: 1242.CrossRefGoogle Scholar
  12. Blackford, B.L, Watanabe, M.O., Dahn, D.C., Jericho, M.H., Southam, G. and Beveridge, T.J., 1989, The imaging of the complete biological structure with the scanning tunneling microscope, Ultramicroscopy 27: 427.CrossRefGoogle Scholar
  13. Blaurock, A.E., and Stoeckenius, W., 1971, Structure of the purple membrane, Nature New Biology 233: 152.PubMedCrossRefGoogle Scholar
  14. Burnham, N.A., Colton, R.J., and Pollock, H.M., 1991, Interpretation issues in force microscopy, J. Vac. Sci. Technol. A9: 2548.Google Scholar
  15. Butt, H.J., Downing, K.H., and Hansma, P.K., 1990, Imaging the membrane protein bacteriorhodopsin with the atomic force microscope, Biophys. J. 58: 1473.PubMedCrossRefGoogle Scholar
  16. Clemmer, C., and Beebe, T., 1991, Graphite: a mimic for DNA and other biomolecules in scanning tunneling microscope studies, Science 251: 640.PubMedCrossRefGoogle Scholar
  17. Dunlap, D.D. and Bustamante, C., 1989, Images of single stranded nucleic acids by scanning tunnelling microscopy, Nature 342: 204.PubMedCrossRefGoogle Scholar
  18. Drake, B., Prater, C.B., Weisenhorn, AL, Gould, S.A.C., Albrecht, T.R., Quate, C.F., Cannell, D.S., Hansma, H.G., and Hansma, P.K., 1989, Imaging crystals, polymers and processes in water with the atomic force microscope, Science 243: 1586.PubMedCrossRefGoogle Scholar
  19. Edstrom, R.D., Yang, X., Lee, G., Evans, D.F., 1990, Viewing molecules with scanning tunneling microscopy and atomic force microscopy, Federation of American Societies for Experimental Biology (FASEB) J. 4: 3144.Google Scholar
  20. Egger, M., Ohnesorge, F., Weisenhorn, AL, Heyn, S.P., Drake, B., Prater, C.B., Gould, S.A.C., Hansma, P.K, and Gaub, H.E., 1990, Wet lipid-protein membranes imaged at submolecular resolution by atomic force microscopy, J. Struct. Biol. 103: 89.CrossRefGoogle Scholar
  21. Engel, A, 1991, Biological applications of scanning probe microscopes, Annu. Rev. Biophys. Biophys. Chem. 20: 79.PubMedCrossRefGoogle Scholar
  22. Fisher, KA, Whitfield, S.L, Thomson, R.E., Yanagimoto, K-C., Gustafsson, M.G.L, and Clarke, J., 1990, Measuring changes in membrane thickness by scanning tunneling microscopy, Biochim. Biophys. Acta. 1023: 325.PubMedCrossRefGoogle Scholar
  23. Golovichenko, J.A., 1986, The tunneling microscope: a new look at the atomic world, Science 232: 48.CrossRefGoogle Scholar
  24. Gould, S.A.C., Drake, B., Prater, C.B., Weisenhorn, A.L, Manne, S., Hansma, H.G., Hansma, P.K., Massie, J., Longmire, M., Elings, V., Dixon Northern, B., Mukergee, B., Peterson, C. M., Stoeckenius, W., Albrecht, T.R., and Quate, C.F., 1990, From atoms to integrated circuit chips, blood cells and bacteria with the atomic force microscope, J. Vac. Sci. Technol. A8: 369.CrossRefGoogle Scholar
  25. Guckenberger, R., Wiegrabe, W., Hillebrand, A., Hartmann, T., Wang, Z., and Baumeister, W., 1989, Scanning tunneling microscopy of a hydrated bacterial surface protein, Ultramicroscopy 31: 327.CrossRefGoogle Scholar
  26. Guckenberger, R., Hacker, B., Hartmann, T., Scheybani, T., Wang, Z., Wiegrabe, W., and Baumeister, W., 1991, Imaging of uncoated purple membrane by scanning tunneling microscopy, J. Vac. Sci. Technol. B9: 1227.Google Scholar
  27. Hansma, P. K., Elings, V.B., Marti, O., and Bracker, C.E., 1988, Scanning tunneling microscopy and atomic force microscopy: application to biology and technology, Science 242: 209.PubMedCrossRefGoogle Scholar
  28. Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E., and Downing, K.H., 1990, A model for the structure of bacteriorhodopsin based on high resolution electron cryo-microscopy, J. Mol. Biol. 213: 899.PubMedCrossRefGoogle Scholar
  29. Henderson, E., 1992, Imaging and nanodissection of individual supercoiled plasmids by atomic force microscopy, Nucleic Acids Res. 20: 445.PubMedCrossRefGoogle Scholar
  30. Hoh, J.H., Lal, R., John, S.A., Revel, J.-P., and Arnsdorf, M.F., 1991, Atomic force microscopy and dissection of gap junctions, Science 253: 1405.PubMedCrossRefGoogle Scholar
  31. Jericho, M.H., Blackford, B.L, and Dahn, D.C., 1989, Scanning tunneling microscope imaging technique for weakly bonded surface deposits, J. Appl. Phys. 65: 5237.CrossRefGoogle Scholar
  32. Keller, R.W., Dunlap, D.D., Bustamante, C., Keller, K.J., Garcia, R.G., Gray, C., and Maestre, M.F., 1990, Scanning tunneling microscopy images of metal-coated bacteriophages and uncoated, double stranded DNA, J. Vac. Sci. Technol. A8: 706.CrossRefGoogle Scholar
  33. Michel, B. and Travaglini, G., 1988, An STM for biological applications:bioscope, J.Microsc. 152: 681.CrossRefGoogle Scholar
  34. Mulhern, P.J., Blackford, B.L, Jericho, M.H., Southam, G., and Beveridge, T.J., 1992, AFM and STM studies of the interaction of antibody with the S-layer sheath of the archaeobacterium Methanospirillum hungatei, Ultramicroscopy 4244: 1214.CrossRefGoogle Scholar
  35. Oesterhelt, D., and Stoeckenius, W., 1971, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature New Biology 233: 149.PubMedGoogle Scholar
  36. Oesterhelt, D., and Stoeckenius, W., 1973, Functions of a new membrane photoreceptor, Proc. Nat. Acad. Sci. USA 70: 2853.PubMedCrossRefGoogle Scholar
  37. Ohnesorge, F., Heckl, W.M., Haberle, W., Pum, D., Sara, M., Schindler, H., Schilcher, K., Kiener, A., Smith, D.P.E., Sleytr, U.B., and Binnig, G., 1992, Scanning force microscopy studies of the S-layers from Bacillus coagulans E3866, Bacillus sphaericus CCM2177 and of an antibody binding process, Ultramicroscopy 42–44: 1236.Google Scholar
  38. Reiss, G., Vancea, J., Wittmann, H., Zweck, J., and Hoffmann, H., 1990, Scanning tunneling microscopy on rough surfaces: Tip-shape-limited resolution, J. Appl. Phys. 67: 1156.CrossRefGoogle Scholar
  39. Salmeron, M., Beebe, T., Odriozola, J., Wilson, T., Ogletree, D.F., and Siekhaus, W., 1990, Imaging of biomolecules with the scanning tunneling microscope:problems and prospects, J. Vac. Sci. Technol. A8: 635.Google Scholar
  40. Salmeron, M., Ogletree, D.F., Ocal, C., Wang, H.-C, Neubauer, G., Kolbe, W., and Meyers, G., 1991, Tip-surface forces during imaging by scanning tunneling microscopy, J. Vac. Sci. Technol. B9: 1347.CrossRefGoogle Scholar
  41. Smith, D.P.E., Bryant, A., Quate, C.F., Rabe, J.P., Gerber, Ch., and Swalen, J.D., 1987, Images of a lipid bilayer at molecular resolution by scanning tunneling microscopy, Proc. NatL Acad. Sci. USA 84: 969.PubMedCrossRefGoogle Scholar
  42. Southam, G., Firtel, M., Blackford, B.L., Jericho, M.H., Xu, W., Mulhern, P.J., and Beveridge, T. J., 1992, Transmission electron microscopy, scanning tunneling microscopy and atomic force micoscopy of the cell envelope layers of the archaeobacterium Methanospirillum hungatei GP1, J. Bacteriol.,in press.Google Scholar
  43. Spong, J.K., Mizes, H.A., LaComb Jr., L.J., Dovek, M.M., Frommer, J.E., and Foster, J.S., 1989, Contrast mechanism for resolving organic molecules with tunnelling microscopy, Nature 338: 137.CrossRefGoogle Scholar
  44. Sprott, G.D., Beveridge, T.J., Patel, G.B., and Ferrante, G., 1986, Sheath disassembly in Methanospirillum hungatei GP1. Can. J. Microbiol. 32: 847.CrossRefGoogle Scholar
  45. Stemmer, A., Engel, A., Haring, R., Reichelt, R., and Aebi, U., 1988, Scanning tunneling microscope with integrated 2-axes heterodyne interferometer and light-microscope, Ultramicroscopy 25: 171.CrossRefGoogle Scholar
  46. Stemmer, A., Hefti, A., Aebi, U., and Engel, A., 1989, Scanning tunneling and transmission electron microscopy on identical areas of biological specimens, Ultramicroscopy 30: 263.PubMedCrossRefGoogle Scholar
  47. Stemmer, A., and Engel, A., 1990, Imaging biological macromolecules by STM: quantitative interpretation of topographs, Ultramicroscopy 34: 129.PubMedCrossRefGoogle Scholar
  48. Stewart, M., Beveridge, T.J., and Sprott, G.D., 1985, Crystalline order to high resolution in the sheath of Methanospirillum hungatei:a cross-beta structure, J. Mol. Biol. 183: 509.PubMedCrossRefGoogle Scholar
  49. Thompson, B.G., Murray, R.G.E., and Boyce, J.F., 1982, The association of the surface array and the outer membrane of Deinococcus radiodurans, Can. J. Microbiol. 28: 1081.CrossRefGoogle Scholar
  50. Travaglini, G., Rohrer, H., Stoll, E., Amrein, M., Stasiak, A., Sogo, J., and Gross, H., 1988, Scanning tunneling microscopy of recA-DNA complexes, Physica Scripta. 38: 309.CrossRefGoogle Scholar
  51. Wepf, R., Amrein, M., Burkli, U., and Gross, H., 1991, Platinum Iridium Carbon -a high-resolution shadowing material for TEM, STM and SEM of biological macromolecular structures, J. Microsc. 163: 51.PubMedCrossRefGoogle Scholar
  52. Wickramasinghe, H.K., 1990, Scanning probe microscopy: Current status and future trends, J. Vac. Sci. Technol. A8: 363.CrossRefGoogle Scholar
  53. Worchester, D.L., Miller, R.G., and Bryant, P.J., 1988, Atomic force microscopy of purple membranes, J. Microsc. 152: 817.CrossRefGoogle Scholar
  54. Worchester, D.L., Kim, H.S., Miller, R.G., and Bryant, P.J., 1990, Imaging bacteriorhodopsin lattices in purple membranes with atomic force microscopy, J. Vac. Sci. Technol. A8: 403.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Max Firtel
    • 1
  • Gordon Southam
    • 1
  • Terry J. Beveridge
    • 1
  • Wei Xu
    • 2
  • Manfred H. Jericho
    • 2
  • Brad L. Blackford
    • 2
  • Peter J. Mulhern
    • 2
  1. 1.Department of Microbiology, College of Biological ScienceUniversity of GuelphGuelphCanada
  2. 2.Department of PhysicsDalhousie UniversityHalifaxCanada

Personalised recommendations