Advertisement

Surface Layers from Bacillus alvei as a Carrier for a Streptococcus pneumoniae Conjugate Vaccine

  • Andrew J. Malcolm
  • Michael W. Best
  • Roderick J. Szarka
  • Zina Mosleh
  • Frank M. Unger
  • Paul Messner
  • Uwe B. Sleytr
Chapter
Part of the NATO ASI Series book series (NSSA, volume 252)

Abstract

Approaches to the use of crystalline bacterial cell surface layers (S-layers) as carrier/adjuvants for conjugate vaccines have been reported recently (Sleytr et al., 1987; Sleytr et al., 1988; Malcolm, et al., 1993; Messner and Sleytr, 1992; Messner et al., 1992; Smith et al., in press). In this chapter, we report on some of the results we have obtained using an S-layer derived from Bacillus alvei CCM 2051 (Altman et al., 1991) as a carrier for a prototype conjugate vaccine against Streptococcus pneumoniae, serotype 8.

Keywords

Conjugate Vaccine Tetanus Toxoid Pneumococcal Vaccine Reductive Amination Diphtheria Toxoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, E., Brisson, J-R., Messner, P., and Sleytr, U. B., 1990, Chemical characterization of the regularly arranged surface layer glycoprotein of Clostridium therrnosaccharolyticum D120–70, Eur. J. Biochem. 188: 73.PubMedCrossRefGoogle Scholar
  2. Altman, E., Brisson, J-R., Messner, P., and Sleytr, U. B., 1991, Chemical characterization of the regularly arranged surface layer glycoprotein of Bacillus alvei CCM 2051, Biochem. Cell. Biol. 69: 72.PubMedCrossRefGoogle Scholar
  3. Anderson, P., 1983, Antibody responses to Haemophilus influenzae type b and diphtheria toxin induced by conjugates of oligosaccharides of the type b capsule with the non-toxic protein CRM197, Infect. Immun. 39: 233.PubMedGoogle Scholar
  4. Anderson, P., Pichichero, M. E., and Insel, R. A., 1985a, Immunogens consisting of oligosaccharides from the capsule of Haemophilus influenzae type b coupled to the diphtheria toxoid or the toxin protein CRM197, J. Clin. Invest. 76: 52.PubMedCrossRefGoogle Scholar
  5. Anderson, P., Pichichero, M. E., and Insel, R. A., 1985b, Immunization of 2-month-old infants with protein-coupled oligosaccharides derived from the capsule of Haemophilus influenzae type b, J. Pediatr. 107: 346.PubMedCrossRefGoogle Scholar
  6. Anderson, P. W., 1987, Immunogenic conjugates, U.S. patent number 4,673, 574.Google Scholar
  7. Bolan, G., Broome, C. V., Facklam, R. R., Pitkaytis, B. D., Fraser, D. W., and Schlech, W. F. III, 1986, Pneumococcal vaccine efficacy in selected populations in the United States, Ann. Internal. Med. 104: 1.CrossRefGoogle Scholar
  8. Borgono, J. M., McLean, A. A., Vella, P. P., Canepa, I., Davidson, W. L, and Hilleman, M. R., 1978, Vaccination and revaccination with polyvalent pneumococcal polysaccharide vaccines in adults and infants, Proc. Soc. Exp. Biol. Med. 157: 148.PubMedGoogle Scholar
  9. Broome, C. V., Facklam, R. R., and Fraser, D. W., 1980, Pneumococcal disease after pneumococcal vaccination: An alternate method to estimate the efficacy of pneumococcal vaccine, N. Engl. J. Med. 303: 549.PubMedCrossRefGoogle Scholar
  10. Christian, R., Schulz, G., Unger, F. M., Messner, P., Küpcü, Z., and Sleytr, U. B., 1986, Structure of a rhamnan from the surface layer glycoprotein of Bacillus stearothermophilus strain NRS 2004/3a, Carbohydr. Res. 150: 265.PubMedCrossRefGoogle Scholar
  11. Christian, R., Messner, P., Weiner, C., Sleytr, U. B., and Schulz, G., 1988, Structure of a glycan from the surface-layer glycoprotein of Clostridium thermohydrosulfuricum strain L111–69, Carbohydr. Res. 176: 160.PubMedCrossRefGoogle Scholar
  12. Chudwin, D. S., Artrip, S. C., Korenbilt, A., Schiffman, G., and Rao, S., 1985, Correlation of serum opsonins with in vitro phagocytosis of Streptococcus pneumoniae, Infect. Immun. 50: 213.PubMedGoogle Scholar
  13. Cryz, S. J., Sadoff, J. C., Fürer, E., and Germanier, R., 1986, Pseudomonas aeruginosa polysaccharide-tetanus toxoid conjugate vaccine: Safety and immunogenicity in humans, J. Infect. Dis. 154: 682.Google Scholar
  14. Cry; S. J., and Fürer, E., 1988, Conjugate vaccine against infections by gram-negative bacteria, method for its preparation and use, U.S. patent number 4,771, 127.Google Scholar
  15. Davis, M-T. B., and Preston, J. F., 1981. A simple modified carbodiimide method for conjugation of small-molecular-weight compounds to immunoglobulin G with minimal protein crosslinking, Anal. Biochem. 116: 402.PubMedCrossRefGoogle Scholar
  16. Di John, D., Torres, J. R., Murillo, J., Herrington, E. A., Wasserman, S. S., Lasonsky, M. J., Stüker, D., and Levine, M. M., 1989, Effect of priming with carrier on response to conjugate vaccine, Lancet 2: 1415.PubMedCrossRefGoogle Scholar
  17. Douglas, R. M., Patton, J. C., Duncan, S. J., and Hansman, D. J., 1983, Antibody response to pneumococcal vaccination in children younger than five years of age, J. Infect. Dis. 148: 131.PubMedCrossRefGoogle Scholar
  18. Etlinger, H. M., Felix, A. M., Lillessen, D., Haemer, E. D., Just, M., Pink, J. R. L, Sinigaglia, F., Stürchler, D., Tacaks, B., Trzeciak, A., and Matile, H., 1988, Assessment in humans of a synthetic peptide-based vaccine against the sporozoite stage of human malaria parasite, Plasmodium falciparum, J. Immunl. 140: 626.Google Scholar
  19. Fattom, A., Vann, W. F., Szu, S. C., Schneerson, R., Robbins, J. B., Chu, C., Sutton, A., Vickers, J. C., London, W. T., Curfman, B., Hardagree, M. C., and Shiloach, J., 1988, Synthesis and physicochemical and immunological characterization of pneumococcus type 12F polysaccharide-diphtheria toxoid conjugates, Infect. Immun. 56: 2292.PubMedGoogle Scholar
  20. Forester, H. L, Jahnigen, D. W., and LaForce, F. M., 1987, Inefficacy of pneumococcal vaccine in a high-risk population, Amer. J. Med. 83: 425.CrossRefGoogle Scholar
  21. Gaur, A., Arunan, K., Singh, O., and Talwar, G. P., 1990, Bypass by an alternate carrier of acquired unresponsiveness to hCG upon repeated immunization with tetanus-conjugated vaccine, Int. Immunol 2: 151.PubMedCrossRefGoogle Scholar
  22. Gordon, L K.,1986, Polysaccharide exotoxoid conjugate vaccines, U. S. patent number 4, 619, 828.Google Scholar
  23. Gordon, L K., 1987, Haemophilus influenzae b polysaccharide-diphtheria toxoid conjugate vaccine, U.S. patent number 4, 644, 059.Google Scholar
  24. Granoff, D. M., Boies, E. G., and Munson, R. S., 1984, Immunogenicity of Haemophilus influenzae type b polysaccharide diphtheria conjugate vaccines in adults, J. Pediatr. 105: 22.PubMedCrossRefGoogle Scholar
  25. Herzenberg, LA., and Tokuhisa, T., 1982, Epitope-specific regulation. I. Carrier-specific induction of suppression for IgG anti-hapten antibody responses, J. Exp. Med. 155: 1730.PubMedCrossRefGoogle Scholar
  26. Hilleman, M. R., Carlson, Jr., A. J., McLean, A. A., Vella, P. P., Weibel, R. E., and Woodhour, A. F., 1981, Streptococcus pneumoniae polysaccharide vaccine: Age and dose responses, safety, persistence of antibody, revaccination, and simultaneous administration of pneumococcal and influenza vaccines, Rev. Infect. Dis. 3 (suppl): S31.Google Scholar
  27. Jennings, H. J., and Lugowski, C., 1985, Immunogenic polysaccharide-protein conjugates, Canadian patent number 1,181, 344.Google Scholar
  28. Jennings, H. J., Roy, R., and Gamian, A. J., 1989, Modified meningococcal group b polysaccharide for conjugate vaccine, Canadian patent number 1,261, 320.Google Scholar
  29. Lock, R. A., Hansman, D., and Paton, J. C., 1992, Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by Streptococcus pneumoniae, Microbial. Pathogen. 12: 137.CrossRefGoogle Scholar
  30. Malcolm, A. J., Messner, P., Sleytr, U. B., Smith, R. H., and Unger, F. M., 1993, Crystalline bacterial cell surface layers (S-layers) as combined carrier/adjuvants for conjugate vaccines, in: “Immobilised Macromolecules: Application Potentials,” U. B. Sleytr, P. Messner, D. Pum and M. Sara, eds., Springer-Verlag, London.Google Scholar
  31. Mandell, G. L, 1990, “Principles and Practise of Infectious Diseases”, Churchill Livingston, New York.Google Scholar
  32. Marburg, S., Jorn, D., Tolman, R. L., Arison, B., McCauley, J., Kniskern, P. J., Hagopian, A., and Vella, P.O., 1986, Biomolecular chemistry of macromolecules: Synthesis of bacterial polysaccharide conjugates with Neisseria meningitides membrane protein, J. Amer. Chem. Soc. 108: 5282.CrossRefGoogle Scholar
  33. Marburg, S., Tolman, R. L, and Kniskern, P. J., 1987, Covalently-modified polyanionic bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers, and methods of preparing such polysaccharides and conjugates and of confirming covalency, U.S. patent number 4,695, 624.Google Scholar
  34. Marburg, S., Kniskern, P. J., and Tolman, R. L, 1989, Covalently-modified bacterial polysaccharides, stable covalent conjugates of such polysaccharides and immunogenic proteins with bigeneric spacers and methods of preparing such polysaccharides and conjugates and of confirming covalency, U. S. patent number 4,882, 317.Google Scholar
  35. Messner, P., and Sleytr, U.B., 1992, Crystalline bacterial cell-surface layers, Adv. Microbial Physiol. 33: 213.CrossRefGoogle Scholar
  36. Messner, P., Sleytr, U. B., Christian, R., Schulz, G., and Unger, F. M., 1987, Isolation and structure determination of a diacetamidodideoxyuronic acid-containing glycan from S-layer glycoprotein of Bacillus stearothermophilus NRS 2004/3a, Carbohydr. Res. 168: 211.PubMedCrossRefGoogle Scholar
  37. Messner, P., Mazid, M. A., Unger, F. M., and Sleytr, U. B., 1992, Artificial antigens. Synthetic carbohydrate haptens immobilized on crystalline bacterial surface layer glycoproteins, Carbohydr. Res. 233: 175.PubMedCrossRefGoogle Scholar
  38. Mufson, M. A., Hughey, D., and Lydick, E., 1985, Type-specific antibody responses of volunteers immunized with 23-valent pneumococcal polysaccharide vaccine, J. Infect. Dis. 151: 749.PubMedCrossRefGoogle Scholar
  39. Mufson, M. A., Krause, H. E., Schiffman, G., and Hughey, D. E., 1987, Pneumococcal antibody levels one decade after immunization of healthy adults, Amer. J. Med. Sci. 293: 279.PubMedCrossRefGoogle Scholar
  40. Paton, J. C., Lock, R. A., Lees, C-J., Li, J. P., Berry, A. M., Mictchell, T. J., Andrew, P. W., Hansman, D., and Boulnois, G. J., 1991, Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide, Infect. Immun. 59: 2297.PubMedGoogle Scholar
  41. Peeters, C. C. A. M., Tenbergen-Meekes, A-M., Poolman, J. T., Beurret, M., Zegers, B. J. M., and Rijkers, G. T., 1991, Effect of carrier priming on immunogenicity of saccharide-protein conjugate vaccines, Infect. Immun. 59: 3504.PubMedGoogle Scholar
  42. Porro, M., Saletti, M., Neucioni, L, Tagliaferi, L, and Marsili, L, 1980, I. Immunogenic correlation between cross-reacting material (CRM197) produced by a mutant C. diphtheria and diphtheria toxoid, J. Infect. Dis. 142: 716.PubMedCrossRefGoogle Scholar
  43. Porro, M., and Costantino, P., 1987, Glycoproteinic conjugates having trivalent immunogenic activity, U. S. patent number 4,711, 779.Google Scholar
  44. Porro, M., 1990, Oligosaccharide conjugate vaccines, Canadian patent number 2,052, 323.Google Scholar
  45. Roy, R., Katzenellenbogen, E., and Jennings, H. L., 1984, Improved procedures for the conjugation of oligosaccharides to protein by reductive amination, Can. J. Biochem. 62: 270.CrossRefGoogle Scholar
  46. Schidt, R. A., Boyd, J. F., McCracken, J. D., Schiffman, G., and Giolma, J. P., 1983, Antibody response to pneumococcal vaccine in patients with solid tumors and lymphomas, Med. Pediatr. Oncol. 11: 305.CrossRefGoogle Scholar
  47. Schneerson, R., Barrera, O., Sutton, A., and Robins, J. B., 1980, Preparation, characterization and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates, J. Exp. Med. 152: 361.PubMedCrossRefGoogle Scholar
  48. Schneerson, R., Robbins, J. B., Chu, C., Sutton, A., Vann, W., Vickers, J. C., London, W. T., Curfman, B., and Hardegree, M. C., 1984, Serum antibody responses to juvenile and infant rhesus monkeys injected with Haemophilus influenzae type b and pneumococcus type 6a capsular polysaccharide protein conjugates, Infect. Immun. 45: 582.PubMedGoogle Scholar
  49. Schneerson, R., Robbins, J. B., Parke, J. C., Bell, C., Schlesselman, J. J., Sutton, A., Wang, Z., Schiffman, G., Karpas, A., and Shiloach, J., 1986, Quantitative and qualitative analyses of serum antibodies elicited in adults by Haemophilus influenzae type b and pneumococcus type 6a capsular polysaccharide-tetanus toxoid conjugates, Infect. Immun. 52: 519.PubMedGoogle Scholar
  50. Schutze, M. P., LeClerc, C., Jolivet., M., Audibert, F., and Chedid, L, 1985, Carrier-induced epitopic suppression, a major issue for synthetic vaccines, J. Immunol. 135: 2319.Google Scholar
  51. Sell, S. H., Wright, P. F., Vaughn, W. K., Thompson, J., and Schiffman, G., 1981, Clinical studies of pneumococcal vaccines in infants: I. Reactogenicity and immunogenicity of two polyvalent polysaccharide vaccines, Rev. Infect. Dis. 3 (suppl): S97.PubMedCrossRefGoogle Scholar
  52. Shapiro, E.D., and Clemens, J. D., 1984, A controlled evaluation of the protective efficacy of pneumococcal vaccine for patients at high risk for serious pneumococcal infections, Ann. Intern. Med. 101: 325.PubMedCrossRefGoogle Scholar
  53. Shapiro, E. D., 1987, Pneumococcal vaccine failure, New Engl. J. Med. 316: 1272.CrossRefGoogle Scholar
  54. Shapiro, E. D., 1991, Pneumococcal vaccine, in: “Vaccines and Immunotherapy,” S. J. Fryz Jr., ed., Pergamon Press, New York.Google Scholar
  55. Siber, G. R., Weitzman, S. A., Aisenberg, A. C., Weinstein, H. J., and Schiffman, G., 1978, Impaired antibody response to pneumococcal vaccine after treatment for Hodgkin’s disease, New Engl. J. Med. 299: 442.PubMedCrossRefGoogle Scholar
  56. Simberkoff, M. S., Cross, A. P., Al-Ibrahim, M., Baltch, A. L, Geiseler, P. J., Nadler, J., Richmond, A. S., Smith, R. P., Schiffman, G., and Shephard, D. S., 1986, Efficacy of pneumococcal vaccine in high-risk patients: Results of a veterans administration cooperative study, New Engl. J. Med. 315: 1318.PubMedCrossRefGoogle Scholar
  57. Simberkoff, M. S., 1989, Pneumococcal vaccine in adults, in: “Immunization,” M. A. Sande, and R. K. Root, eds., Churchill Livingstone, New York.Google Scholar
  58. Sims, R. V., Steinman, W. C., McConville, J. H., King, L K., Zwick, W. C., and Schwartz, J. C., 1988, The clinical effectiveness of pneumococcal vaccine in the elderly, Ann. Intern. Med 108: 653.PubMedCrossRefGoogle Scholar
  59. Sleytr, U.B., and Messner, P., 1983, Crystalline surface layers on bacteria, Annu. Rev. Microbiol. 37: 311.PubMedCrossRefGoogle Scholar
  60. Sleytr, U. B., Messner, P., Pum, D., and Sara, M., eds., 1988, “Crystalline bacterial cell surface layers”, Springer-Verlag, Berlin.Google Scholar
  61. Sleytr, U. B., Mundt, W., and Messner, P., 1987, Pharmazeutische Struktur. European Patent Application No. 0306473A1.Google Scholar
  62. Sloyer, J. L, Jr., Ploussard, J. H., and Howie, V. M., 1981, Efficacy of pneumococcal polysaccharide vaccine in preventing acute otitis media in infants in Huntsville, Al., Rev. Infect. Dis. 3 (suppl.): S19.CrossRefGoogle Scholar
  63. Smith, R. H., Messner, P., Lamontagne, L R., Sleytr, U. B., and Unger, F. M., Induction of T-cell immunity to oligosaccharide antigens immobilized on crystalline bacterial surface layers (S-layers), Vaccine, in press.Google Scholar
  64. Tsay, G. C., and Collins, M. S., 1987, Vaccines for gram-negative bacteria, U. S. patent number 4,663, 160.Google Scholar
  65. Vogel, F. R., LeClerc, C., Schutze, M. P., Jolivet, M., Audibet, F., Klein, T. W., and Chedid, L, 1987, Modulation of carrier-induced epitopic suppression by Bordetella pertussis components and muramyl peptide, Cell Immunol. 107: 40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Andrew J. Malcolm
    • 1
  • Michael W. Best
    • 1
  • Roderick J. Szarka
    • 1
  • Zina Mosleh
    • 1
  • Frank M. Unger
    • 1
  • Paul Messner
    • 2
  • Uwe B. Sleytr
    • 2
  1. 1.Chembiomed Ltd.EdmontonCanada
  2. 2.Center for Ultrastructure Research and Ludwig Boltzman Institute for Molecular NanotechnologyUniversity of AgricultureViennaAustria

Personalised recommendations