Advertisement

Molecular Nanotechnology with S-Layers

  • Dietmar Pum
  • Uwe B. Sleytr
Chapter
Part of the NATO ASI Series book series (NSSA, volume 252)

Abstract

Nanotechnology is not only a new word it is a new way of thinking since it combines knowledge from such diverse disciplines as physics, biology, and chemistry. In an interdisciplinary way it comprises the techniques and properties of molecular manufacturing. Molecular nanotechnology originated from the efforts made by the electronic industry in miniaturizing integrated circuits. Increased processing speed, decreased energy consumption as well as decreased size and weight of the products should all lead to greatly improved computer performance. Nevertheless, scientists already predict that this conventional technology will lead to a dead end since severe physical limits imposed by quantum and thermal fluctuation phenomena will be rapidly approached. When the size of conventional transistors approaches the wavelength of electrons the ability of silicon chips to function will deteriorate because electrons will tunnel through the insulating layers of the switching elements. As a consequence the operation of these miniature devices will become unreliable.

Keywords

Scanning Tunneling Microscope Outer Face Scanning Force Microscope Microfiltration Membrane Crystalline Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumeister, W., and Engelhardt, H., 1987, Three-dimensional structure of bacterial surface layers, in: “Electron microscopy of proteins”, Vol. 6, J.R. Harris, and R.W. Home, eds., Academic Press Inc., London.Google Scholar
  2. Beveridge, T.J., 1981, Ultrastructure, chemistry, and function of the bacterial wall, Int. Rev. Cytol. 72: 229.PubMedCrossRefGoogle Scholar
  3. Beveridge, T.J., and Graham, L.L., 1991, Surface layers of bacteria, Microbiol. Rev. 55: 684.PubMedGoogle Scholar
  4. Beveridge, T.J., Sprott, G.D., and Stewart, M., 1988, The structure, chemistry and physicochemistry of the Methanospirillum hungatei GP1 sheath, in: “Crystalline Bacterial Cell Surface Layers”, U.B. Sleytr, P. Messner, D. Pum, and M. Sara, eds., Springer, Berlin.Google Scholar
  5. Douglas, K., and Clark, N.A., 1986, Nanometer molecular lithography, Appl. Phys. Lett. 48: 676.CrossRefGoogle Scholar
  6. Eigler, D.M., and Schweizer, E.K., 1990, Positioning single atoms with a scanning tunneling microscope, Nature 344: 524.CrossRefGoogle Scholar
  7. Eigler, D.M., Lutz, C.P., and Rudge, W.E., 1991, An atomic switch realized with the scanning tunneling microscope, Nature 352: 600.CrossRefGoogle Scholar
  8. Fisher, K.A., Yanagimoto, K.C., Whitfield, S.L., Thomson, R.E., Gustafsson, and Clarke, J., 1990, Scanning tunneling microscopy of planar biomembranes, Ultramicroscopy 33: 117.Google Scholar
  9. Gruber, K., and Sleytr, U.B., 1991, Influence of an S-layer on surface properties of Bacillus stearothermophilus, Arch. Microbiol. 156: 181.PubMedCrossRefGoogle Scholar
  10. Hovmöller, S., Sjögren, A., and Wang, D.N., 1988, The structure of crystalline bacterial surface layers, Prog. Biophys. Molec. Biol. 51: 131.CrossRefGoogle Scholar
  11. Israelachvili, J., 1985, “Intermolecular and Surface Forces”, Academic Press Inc., London.Google Scholar
  12. Jaenicke, R., Welsch, R., Sara, M., and Sleytr, U.B., 1985, Stability and self-assembly of the S-layer protein of the cell wall of Bacillus stearothermophilus, Physiol. Chem. Hoppe-Seyler 366: 663.Google Scholar
  13. Koval, S.F., 1988, Paracrystalline protein surface arrays on bacteria, Can. J. Microbiol. 34: 407.CrossRefGoogle Scholar
  14. Messner, P., and Sleytr, U.B., 1991, Bacterial surface layer (S-layer) glycoproteins, GlycobioL 1: 545.CrossRefGoogle Scholar
  15. Messner, P., and Sleytr, U.B., 1992, Crystalline bacterial cell-surface layers, Adv. Microbial Physiol. 33: 213.CrossRefGoogle Scholar
  16. Messner, P., Pum, D., Sara, M., Stetter, KO., and Sleytr, U.B, 1986, Ultrastructure of the cell envelope of the archaebacteria Thennoproteus tenax and Thermoproteus neutrophilus, J. Bacteriol. 166: 1046.PubMedGoogle Scholar
  17. Nagayama, K, 1992, Protein array: an emergent technology from biosystems, Nanobiology 1: 25.Google Scholar
  18. Pum, D., Sara, M., and Sleytr, U.B.,1989a, Structure, surface charge and self-assembly of the S-layer lattice from Bacillus coagulans E38–66, J. BacterioL 171: 5296.Google Scholar
  19. Pum, D., Sara, M., Sleytr, U.B., 1989b, Use of two-dimensional protein crystals from bacteria for nonbiological applications, J. Vac. Sci. Technol. B 6: 1391.CrossRefGoogle Scholar
  20. Pum, D., Sara, M., Messner, P., and Sleytr, U.B., 1991, Two-dimensional (glyco)protein crystals as patterning elements for the controlled immobilization of functional molecules, Nanotechnology 2: 196.CrossRefGoogle Scholar
  21. Pum, D., Sara, M., and Sleytr, U.B., 1992, Two-dimensional (glyco)protein crystals as patterning elements and immobilisation matrices for the development of biosensors, in:“Immobilised Macromolecules: Application Potential”, U.B. Sleytr, P. Messner, M. Sara, and D. Pum, eds., Springer, London (in press).Google Scholar
  22. Sara, M., and Sleytr, U.B., 1987a, Production and characteristics of ultrafiltration membranes with uniform pores from two-dimensional arrays of proteins, J. Membr. Sci. 33: 27.CrossRefGoogle Scholar
  23. Sara, M., and Sleytr, U.B., 1987b, Charge distribution on the S-layer of Bacillus stearothermophilus NRS 1536/3c and the importance of charged groups for morphogenesis and function, J. BacterioL 169: 2804.PubMedGoogle Scholar
  24. Sara, M., and Sleytr, U.B., 1988, Membrane biotechnology: Two-dimensional protein crystals for ultrafiltration purposes, in: “Biotechnology”, Vol. 6b, H.J. Rehm, ed., VCH Verlagsgesellschaft, Weinheim.Google Scholar
  25. Sara, M., and Sleytr, U.B., 1989, Use of regularly structured bacterial cell envelope layers as matrix for the immobilization of macromolecules, Appl. Microbiol. BiotechnoL 30: 184.CrossRefGoogle Scholar
  26. Sara, M., Wolf, G., Küpcü, S., Pum, D., Sleytr, U.B., 1988, Use of crystalline bacterial cell envelope layers as ultrafiltration membranes and supports for the immobilization of macromolecules, in: “Dechema Biotechnology Conferences”, Vol. 2, VCH Verlagsgesellschaft, Weinheim.Google Scholar
  27. Sara, M., Küpcü, S., and Sleytr, U.B., 1989, Localization of the carbohydrate residue of the S-layer glycoprotein from Clostridium thermohydrosulfuricum L111–69, Arch. Microbiol. 151: 416.CrossRefGoogle Scholar
  28. Sara, M., Pum, D., and Sleytr, U.B., 1992a, Permeability and charge-dependent adsorption properties of the S-layer lattice from Bacillus coagulans E38–66, J. Bacteriol. 174: 3487.PubMedGoogle Scholar
  29. Sara, M., Küpcü, S., Weiner, C., Weigert, S., and Sleytr, U.B., 1992b, Crystalline protein layers as isoporous molecular sieves and immobilization and affinity matrices. in:“Immobilised Macromolecules: Application Potential”, U.B. Sleytr, P. Messner, M. Sara, and D. Pum, eds., Springer, London (in press).Google Scholar
  30. Shedd, G.M., and Russell, P.E., 1990, The scanning tunneling microscope as a tool for nanofabrication, NanotechnoL 1: 67.CrossRefGoogle Scholar
  31. Sleytr, U.B., 1978, Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function, Int. Rev. Cytol. 53: 1.PubMedCrossRefGoogle Scholar
  32. Sleytr, U.B., and Messner, P., 1983, Crystalline surface layers on bacteria, Annu. Rev. Microbiol. 37: 311.PubMedCrossRefGoogle Scholar
  33. Sleytr, U.B., and Messner, P., 1988, Crystalline surface layers in procaryotes, J. Bacteriol. 170: 2891.PubMedGoogle Scholar
  34. Sleytr, U.B., and Messner, P., 1989, Self assembly of crystalline bacterial cell surface layers (S-layers), in: “Electron Microscopy of Subcellular Dynamics”, H. Plattner, ed., CRC Press Inc., Boca Raton.Google Scholar
  35. Sleytr, U.B., Messner, P., and Pum, D., 1987, Analysis of crystalline bacterial surface layers by freeze-etching, metal shadowing, negative staining, and ultra-thin sectioning, in: “Methods in Microbiology”, Vol. 20, F. Mayer, ed., Academic Press Inc., London.Google Scholar
  36. Sleytr, U.B., Messner, P., Pum, D., and Sara, M., 1988a, “Crystalline Bacterial Cell Surface Layers”, Springer, Berlin.CrossRefGoogle Scholar
  37. Sleytr, U.B., Sara, M., and Pum, D., 1988b, Application potentials of two dimensional protein crystals. in: “Microcircuit Engineering ‘88”, F. Paschke, W. Fallmann, and H. Löschner, eds., Elsevier Science Publishers B.V., Amsterdam.Google Scholar
  38. Sleytr, U.B., Pum, D., Sara, M., and Messner, P., 1992, Two-dimensional protein crystals as patterning elements in molecular nanotechnology, in: “AIP conference proceedings 262, Molecular Electronics - Science and Technology”, A. Aviram, ed., American Institute of Physics, New York.Google Scholar
  39. Sleytr, U.B., Messner, P., Pum, D., and Sara, M., 1993, Crystalline bacterial cell surface layers: General principles and application potential, in:“The Cell Envelope - Structure and Function”, Special Issue of J. Appl. Bacteriol. (in press).Google Scholar
  40. Smit, J., 1987, Protein surface layers of bacteria, in: “Bacterial Outer Membranes as Model Systems”, M. Inouye, ed., John Wiley and Sons, New York.Google Scholar
  41. Turner, A.P.F., Karube, I., and Wilson, G.S., 1988, “Biosensors: Fundamentals and Applications”, Oxford University Press, Oxford.Google Scholar
  42. Utsugi, Y., 1990, Nanometre-scale chemical modification using a scanning tunneling microscope, Nature 347: 747.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Dietmar Pum
    • 1
  • Uwe B. Sleytr
    • 1
  1. 1.Center for Ultrastructure Research and Ludwig Boltzman Institute for Molecular NanotechnologyUniversity of AgricultureViennaAustria

Personalised recommendations