Advertisement

Nonlinear System Identification of Hippocampal Neurons

  • Berj L. Bardakjian
  • W. Neil Wright
  • Taufik A. Valiante
  • Peter L. Carlen

Abstract

Although the passive electrical properties of neural membranes are well modeled by linear résistive-capacitive (RC) ladder networks, they do not account for the nonlinear current-voltage (I–V) relations which are observed in most neural cells. Typically the I–V relations of neuronal membranes are obtained using a voltage-clamp paradigm where it is, generally difficult to maintain a uniform transmembrane voltage. This chapter describes a white-noise identification scheme which identifies both the dendritic RC ladder networks and the somatic nonlinear I–V relations of hippocampal neurons.

Keywords

Input Impedance Input Current Voltage Response Transmembrane Voltage Scatter Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bardakjian, B.L. (1990) Characterization of passive electrical properties of excitable cells using optimization methods. Med. Prog, through Tech., 16:11–17.Google Scholar
  2. 2.
    Charalambous, C. (1977) Nonlinear least pth optimization and nonlinear programming. Math. Prog., 12:195–225.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    D’Aguanno, A., Bardakjian, B.L. and Carlen, P.L. (1986) Passive neuronal membrane parameters: Comparison of optimization and peeling methods. IEEE Trans. Biomed. Eng., 33:1188–1196.CrossRefGoogle Scholar
  4. 4.
    D’Aguanno, A., Bardakjian, B.L. and Carlen, P.L. (1989) A system model for investigating passive electrical properties of neurons. Biophys. J., 55:1169–1182.CrossRefGoogle Scholar
  5. 5.
    Durand, D. (1984) The shunt cable model for neurons. Biophys. J., 46:645–653.CrossRefGoogle Scholar
  6. 6.
    Fletcher, R. (1970) A new approach to variable metric algorithms. Comput. J., 13:317–322.MATHCrossRefGoogle Scholar
  7. 7.
    Fu, P., Bardakjian, B.L. and Carlen, PL. (1989) Computation of the passive electrical parameters of neurons using a system model. IEEE Trans. Biomed. Eng., BME-3655–64.Google Scholar
  8. 8.
    Grundfest, H. (1972) N-shaped characteristics in living membranes, In: Perspectives in Membrane Biophysics, Ch. 3, Agin, D.P. (ed.), Gordon & Breach Publ., Cooper Station, New York, pp. 37–63.Google Scholar
  9. 9.
    Hamill, O.P., Marty, A., Neher, B., Sakmann, B. and Sigworth, F.J. (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Archives, 391:85–100.CrossRefGoogle Scholar
  10. 10.
    Hille, B. (1992) Ionic Channels of Excitable Membranes, Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
  11. 11.
    Hindmarsh, A.C. (1983) Odepack, a systematized collection of ODE solvers, In: Scientific Computing, Stepleman, R.S. et al., eds., North-Holland, pp. 55–64.Google Scholar
  12. 12.
    Jack, J.J.B., Noble, D., and Tsien, R.W. (1983) Electric Current Flow in Excitable Cells, Clarendon Press, Oxford, England.Google Scholar
  13. 13.
    Korenberg, M.J. (1988) Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithm. Annals of Biomed. Eng., 16:123–142.CrossRefGoogle Scholar
  14. 14.
    Marmarelis, P.Z. and Marmarelis V.Z. (1978) Analysis of Physiological Systems: The White-Noise Approach, Plenum Press, New York, New York.CrossRefGoogle Scholar
  15. 15.
    Rail, W. (1969) Time constants and electronic length of membrane cylinders and neurons. Biophys. J., 9:1483–1508.CrossRefGoogle Scholar
  16. 16.
    Rail, W. (1977) Core Conductor Theory and Cable Properties of Neurons, In: Handbook of Physiology: The Nervous System I, Chapter 3, American Physiological Society.Google Scholar
  17. 17.
    Wiener, N. (1958) Nonlinear Problems in Random Theory, John Wiley & Sons, New York, New York.MATHGoogle Scholar
  18. 18.
    Wolfram, S. (1991) Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, Reading, Massachusetts.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Berj L. Bardakjian
    • 1
  • W. Neil Wright
    • 1
  • Taufik A. Valiante
    • 1
  • Peter L. Carlen
    • 1
  1. 1.Institute of Biomedical Engineering, Playfair Neuroscience Unit, Departments of Electrical and Computer Engineering, and MedicineUniversity of TorontoCanada

Personalised recommendations