Residence Time Distributions in Pharmacokinetics: Behavioral and Structural Models

  • Michael Weiss


In contrast to other mathematical concepts used in pharmacokinetics the theory of residence time distributions (RTDs) is independent of a detailed structural model or a particular curve model. In view of the fact that interpretations of RTDs have been mostly based on compartmental models (e. g., [1, 2]), the following shortcomings of this class of structural models should be noted: 1) there is no a priori reason for the existence of homogeneous compartments. The assumption that all elementary subsystems are characterized by exponentially distributed transit times restricts the generality of the approach; 2) the definition of a sampling compartment from which elimination occurs does not allow for a differentiation between sampling upstream or downstream of the elimination site, which leads to inconsistencies in the definition of the volume of distribution, V ss [3].


Residence Time Distribution Disposition Curve Inverse Gaussian Distribution Washout Curve Pharmacokinetic System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Matis, T. E. Wehrly, and C. M. Metzler. On some stochastic formulations and related statistical moments of pharmacokinetic models. J. Pharmacokin. Biopharm. 11:77–92 (1983).CrossRefGoogle Scholar
  2. 2.
    S. L. Beal. Some clarifications regarding moments of residence times with pharmacokinetic models. J. Pharmacokin. Biopharm. 15:75–92 (1987).CrossRefGoogle Scholar
  3. 3.
    M. Weiss. Nonidentity of the steady-state volumes of distribution of the eliminating and noneliminating system. J. Pharm. Sci. (in press).Google Scholar
  4. 4.
    R. E. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, New York, 1975.Google Scholar
  5. 5.
    W. Feller. An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York, 1966.Google Scholar
  6. 6.
    M. Brown. Approximating IMRL distributions by exponential distributions, with applications to first passage times. Ann. Probab. 11:419–427 (1983).CrossRefGoogle Scholar
  7. 7.
    P. Embrechts. A property of the generalized inverse Gaussian distribution with some applications. J. Appl. Probab. 20:537–544 (1983).CrossRefGoogle Scholar
  8. 8.
    T. K. Henthorn, M. J. Avram, and T. C. Krejcie. Intravascular mixing and drug distribution: The concurrent disposition of thiopental and indocyanine green. Clin. Pharmacol. Ther. 45:56–65 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Weiss. Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. I. Log-convex drug disposition curves. J. Pharmacokin. Biopharm. 14:635–657 (1986).CrossRefGoogle Scholar
  10. 10.
    M. Weiss. Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. II. Log-concave concentration-time curves following oral administration. J. Pharmacokin. Biopharm. 15:57–74 (1987).CrossRefGoogle Scholar
  11. 11.
    M. Brown and G. Ge. Exponential approximations for two classes of aging distributions. Ann. Probab. 12:869–875 (1984).CrossRefGoogle Scholar
  12. 12.
    J. Keilson. Markov Chain Models-Rarity and Exponentiality, Springer-Verlag, New York, 1979.CrossRefGoogle Scholar
  13. 13.
    M. Weiss. Use of gamma distributed residence times in pharmacokinetics. Eur. J. Clin. Pharmacol. 25:695–702 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    M. E. Wise. Negative power functions of time in pharmacokinetics and their implications. J. Pharmacokin. Biopharm. 13:309–346 (1985).CrossRefGoogle Scholar
  15. 15.
    G. T. Tucker, P. R. Jackson, G. C. A. Storey, and D. W. Holt. Amiodarone disposition: Polyexponential, power and gamma functions. Eur. J. Clin. Pharmacol. 26:655–856 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    V. K. Piotrovskii. Pharmacokinetic stochastic model with Weibull-distributed residence times of drug molecules in the body. Eur. J. Clin. Pharmacol. 32:515–523 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Riegelman and P. Collier. The application of statistical moment theory to the evaluation of in vivo dissolution time and absorption time. J. Pharmacokin. Biopharm. 8:509–534 (1980).CrossRefGoogle Scholar
  18. 18.
    J. M. van Rossum and C. A. M. van Ginneken. Pharmacokinetic system dynamics. In E. Gladtke and H. Heimann (eds.), Pharmacokinetics, Fischer, Stuttgart, 1980, pp. 53–73.Google Scholar
  19. 19.
    B. Jorgensen. Statistical properties of the generalized inverse Gaussian distribution. Lecture Notes in Statistics, Vol. 9, Springer-Verlag, New York, 1982.Google Scholar
  20. 20.
    M. S. Roberts, J. D. Donaldson, and M. Rowland. Models of hepatic elimination: Comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling of hepatic elimination. J. Pharmacokin. Biopharm. 16:41–83 (1988).CrossRefGoogle Scholar
  21. 21.
    D. R. Cox. Renewal Theory, Methuen, London, 1962.Google Scholar
  22. 22.
    M. Weiss. Theorems on log-convex disposition curves in drug and tracer kinetics. J. Theor. Biol. 116:355–368 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Brown. Bounds, inequalities, and monotonicity properties for some specialized renewal processes. Ann. Probab. 8:227–240 (1980).CrossRefGoogle Scholar
  24. 24.
    M. Weiss and K. S. Pang. The dynamics of drug distribution as assessed by the second and third curve moments. Eur. J. Pharmacol. 183:611–622 (1990).CrossRefGoogle Scholar
  25. 25.
    M. Brown. Further monotonicity properties for specialized renewal processes. Ann. Probab. 9:891–895 (1981).CrossRefGoogle Scholar
  26. 26.
    M. Weiss. A note on the role of generalized inverse Gaussian distributions of circulatory transit times in pharmacokinetics. J. Math. Biol. 18:95–102 (1984).CrossRefGoogle Scholar
  27. 27.
    M. Weiss. Moments of physiological transit time distributions and the time course of drug disposition in the body. J. Math. Biol. 15:305–318 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Weiss. Washout time versus mean residence time. Pharmazie 43:126–127 (1988).PubMedGoogle Scholar
  29. 29.
    M. Weiss. Model-independent assessment of accumulation kinetics based on moments of drug disposition curves. Eur. J. Clin. Pharmacol. 27:355–359 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    J. M. van Rossum, J. E. G. M. de Bie, G. van Lingen, and H. W. A. Teeuwen. Pharmacokinetics from a dynamical systems point of view. J. Pharmacokin. Biopharm. 17:365–392 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Michael Weiss
    • 1
  1. 1.Institut für Pharmakologie und ToxikologieMartin-Luther-Universität Halle-WittenbergGermany

Personalised recommendations