Skip to main content

The Significance of Marked “Universal” Dependence of Drug Concentration on Blood Sampling Site in Pharmacokinetics and Pharmacodynamics

  • Chapter
Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis

Abstract

Until recently [1–3] it has been commonly assumed in pharmacokinetics and pharmacodynamics that “blood is blood” and blood (plasma or serum) concentrations of an endogenous or exogenous compound are practically identical, whether the blood sample is obtained from an arm artery, an arm vein, a leg vein, a pulmonary artery or a jugular vein. Such a sampling site-independent concept has apparently originated from an unrigorously tested assumption that after a bolus intravenous injection, the mixing of a substance in the entire blood circulation is extremely efficient; it was said to be complete in seconds [4, 5] or in three circulatory transit times, which is about three minutes in humans [6, 7] and much shorter in small animals [1]. The wide use of the plasma (blood) or central compartment concept in multi-compartmental or noncompartmental analysis [8–12] in the last several decades has undoubtedly contributed to the general acceptance of the above assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Chiou. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics. (Parti). Clin. Pharmacokinet. 17:175–199 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. W. L. Chiou. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics. (Part II). Clin. Pharmacokinet. 17:275–290 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. T. Terada, K. Ishibashi, T. Tsuchiya, H. Noguchi, and T., Mimura. Arterial-venous concentration gradients as a potential source of error in pharmacokinetic studies. Plasma concentration differences of 6-chloro-2-pyridylmethyl nitrate on constant infusion to rats. Xenobiotica 19:661–667 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. W. L. Chiou, G. Lam, M. L. Chen, and M. G. Lee. Arterial-venous plasma concentration differences of six drugs in the dog and rabbit after intravenous administration. Res. Commun. Chem. Path. 32:27–39 (1981).

    CAS  Google Scholar 

  5. W. L. Chiou and G. Lam. The significance of the arterial-venous plasma concentration difference in clearance studies. Int. J. Clin. Pharm. Th. 20:197–203 (1982).

    CAS  Google Scholar 

  6. K. B. Bischoff. Physiological pharmacokinetics. Bull. Math. Biol. 48:309–322 (1986).

    PubMed  CAS  Google Scholar 

  7. T. K. Henthron, M. J. Avram, and T. C. Krejeie. Intravascular mixing and drug distribution: The concurrent disposition of thiopental and indocyanine green. Clin. Pharmacol. Ther. 45:56–65 (1989).

    Article  Google Scholar 

  8. T. Teorell. Kinetics of distribution of substances administered to the body II. The intravascular modes of administration. Arch. Int. Pharmacod. T. 57:226–240 (1937).

    CAS  Google Scholar 

  9. A. Rescigno and G. Segre. Drugs and Tracer Kinetics, Blaisdell Publishing, New York, 1966.

    Google Scholar 

  10. S. Riegelman, J. C. K. Loo, and M. Rowland. Shortcomings in pharmacokinetic analysis by conceiving the body to exhibit properties of a single compartment. J. Pharm. Sci. 57:117–123 (1968).

    Article  PubMed  CAS  Google Scholar 

  11. M. Gibaldi and D. Perrier. Pharmacokinetics, Marcel Dekker, New York, 1982.

    Google Scholar 

  12. L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady-state volume of distribution. J. Pharm. Sci. 68:1071–1074 (1979).

    Article  PubMed  CAS  Google Scholar 

  13. G. T. Tucker and L. E. Mather. Pharmacokinetics of local anesthetic agents. Brit. J. Anaesth. 47:213–244 (1975).

    PubMed  Google Scholar 

  14. G. T. Tucker and L. E. Mather. Clinical pharmacokinetics of local anesthetics. Clin. Pharmacokinet. 4:241–278 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. R. B. Forney, F. W. Hughes, R. N. Harger, and A. B. Richards. Alcohol distribution in the vascular system: Concentration of orally administered alcohol in blood from various points in the vascular system, and in rebreathed air during absorption. Quart. J. Stud. Alcohol. 25:205–220 (1954).

    Google Scholar 

  16. S. Bojolm, O. B. Paulson, and H. Flachs. Arterial and venous concentrations of phenobarbital, phenytoin, clonazepam, and diazepam after rapid intravenous injections. Clin. Pharmacol. Ther. 32:478–483 (1982).

    Article  Google Scholar 

  17. F. J. Baud, P. Houze, C. Bismuth, A. Jaeger and C. Keyes. Toxicokinetics of paraquate through the heart-lung block. Six cases of acute human poisoning. J. Toxicol. Clin. Toxi. 26:35–50 (1988).

    Article  CAS  Google Scholar 

  18. G. Lam and W. L. Chiou. Arterial and venous blood sampling in pharmacokinetic studies: Propranolol in rabbits and dogs. Res. Commun. Chem. Path. 33:33–48 (1981).

    CAS  Google Scholar 

  19. Y. M. Amin, E. B. Thompson, and W. L. Chiou. Fluorocarbon aerosol propellants XII: Correlation of blood levels of trichloromonofluoromethane to cardiovascular and respiratory responses in anesthetized dogs. J. Pharm. Sci. 68:160–163 (1979).

    Article  PubMed  CAS  Google Scholar 

  20. W. L. Chiou. A new model-independent physiological approach to study hepatic drug clearance and its applications. Int. J. Clin. Pharm. Th. 22:577–590 (1984).

    CAS  Google Scholar 

  21. W. L. Chiou. The effect of change in luminal perfusion rate on intestinal drug absorption studied by a simple unified organ clearance approach. Pharmaceut. Res. 6:1056–1059 (1989).

    Article  CAS  Google Scholar 

  22. W. L. Chiou and H. J. Lee. Effect of change in blood flow on hemodialysis clearance studied by a simple unified organ clearance approach. Res. Commun. Chem. Path. 65:393–396 (1989).

    CAS  Google Scholar 

  23. A. C. Guyton. Textbook of Medical Physiology, 7th ed., W. B. Saunders, Philadelphia, 1986.

    Google Scholar 

  24. P. S. Randhawa. Theophylline blood levels in circulatory shock. Ann. Intern. Med. 110:1035 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. J. M. Collins and R. L Dedrick. Contribution of lungs to total body clearance: Linear and nonlinear effects. J. Pharm. Sci. 71:66–70 (1982).

    Article  PubMed  CAS  Google Scholar 

  26. W. L. Chiou. Potential pitfalls in the conventional pharmacokinetic studies: Effects of the initial mixing of drug in blood and the pulmonary first-pass elimination. J. Pharmacokin. Biopharm. 7:527–536 (1979).

    Article  CAS  Google Scholar 

  27. M. L. Chen and W. L. Chiou. Pharmacokinetics of methotrexate and 7-hydroxy-methotrexate in rabbits after intravenous administration. J. Pharmacokin. Biopharm. 11:499–513 (1983).

    Article  CAS  Google Scholar 

  28. H. L. Fung. Pharmacokinetics of nitroglycerin and long-acting nitrate esters. Am. J. Med. 74:13–20 (1983).

    Article  PubMed  CAS  Google Scholar 

  29. A. B. Hill, C. J. Bowley, M. L. Nahrwold, P. R. Knight, M. M. Kirsh, and J. K. Denlinger. Intranasal administration of nitroglycerin. Anesthesiology 54:346–348 (1981).

    Article  PubMed  CAS  Google Scholar 

  30. W. L. Chiou, G. Lam, M. L. Chen, and M. G. Lee. Effect of arterial-venous plasma concentration differences on the determination of mean residence time of drugs in the body. Res. Commun. Chem. Path. 35:17–26 (1982).

    CAS  Google Scholar 

  31. R. Haekel. Relationship between intraindividual variation of the saliva/plasma and of the arteriovenous concentration ratio as demonstrated by the administration of caffeine. J. Clin. Chem. Clin. Bio. 28:279–284 (1990).

    Google Scholar 

  32. W. L. Chiou, G. Lam, M. L. Chen, and M. G. Lee. Instantaneous input hypothesis in pharmacokinetic studies. J. Pharm. Sci. 70:1037–1039 (1981).

    Article  PubMed  CAS  Google Scholar 

  33. M. L. Chen, G. Lam, M. G. Lee, and W. L. Chiou. Arterial and venous blood sampling in pharmacokinetic studies: Griseofulvin. J. Pharm. Sci. 71:1386–1389 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chiou, W.L. (1991). The Significance of Marked “Universal” Dependence of Drug Concentration on Blood Sampling Site in Pharmacokinetics and Pharmacodynamics. In: D’Argenio, D.Z. (eds) Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9021-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9021-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9023-8

  • Online ISBN: 978-1-4757-9021-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics