Advertisement

Surface Chemical Characteristics and Adsorption Properties of Apatite

  • P. Somasundaran
  • Y. H. C. Wang

Abstract

Interfacial behavior of apatites is governed to a large extent by their electrochemical properties which in turn are determined by pH, concentration of calcium, phosphate and fluoride. Adsorption of surfactants and polymers on apatite is dependent, among other factors, on the interfacial potential of the apatite. In this paper electrokinetic properties of synthetic hydroxyapatite and natural ore apatite containing fluoride are reported as a function of the pH, KNO3, Ca(NO3)2, K2HPO4 and KF and mechanisms governing the surface charge generation are reviewed. Electrokinetic effects obtained for apatite upon treatment with concentrated KF solutions and calcite supernatant are analyzed to determine possible chemical alterations of its surface. Adsorption properties of ionic surfactants and ionic and nonionic polymers on apatite at different pH values are also discussed.

Keywords

Zeta Potential Isoelectric Point Synthetic Hydroxyapatite Total Phosphate Concentration Potential Determine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Eliot, Calc. Tiss. Res., 3: 293 (1969).CrossRefGoogle Scholar
  2. 2.
    T.W. Cutress, Archs. Oral. Biol., 11: 121 (1966).CrossRefGoogle Scholar
  3. 3.
    J.A. Gray, J. Dent. Res., 44: 493 (1965).CrossRefGoogle Scholar
  4. 4.
    J.C. Muhler, T.M. Boyd and G. Van Huysen, J. Dent. Res., 29: 182, (1950).CrossRefGoogle Scholar
  5. 5.
    H.T. Dean, P. Jay and F.A. Arnold, F. J. McClure and E. Elvove, Public Health Reports, 54: 862 (1939)CrossRefGoogle Scholar
  6. B.F. Miller, Proc. Soc. Exp. Biol. and Med., 39: 389 (1938)Google Scholar
  7. H.C. Hodge and S.B. Finn, Prac. Soc. Exp. Biol. and Med., 42: 318 (1939).Google Scholar
  8. 6.
    C.F. Geyer, J. Dent. Res., 32: 590 (1953).CrossRefGoogle Scholar
  9. 7.
    G. Tank and C.A. Storuik, J. Dent. Res., 39: 473 (1960).CrossRefGoogle Scholar
  10. 8.
    D.M. Hadjimarkos, J. Pediat., 48: 195 (1956).CrossRefGoogle Scholar
  11. 9.
    W. Buttner, J. Dent. Res., 42: 453 (1963).CrossRefGoogle Scholar
  12. 10.
    T.G. Ludwig, W.B. Healy and F.L. Losse, Nature, 186: 695 (1960).CrossRefGoogle Scholar
  13. 11.
    G.N. Jenkins, Dr. Dent. J., 122:435–441; 500–503; 545–550 (1967).Google Scholar
  14. 12.
    L.H. Eggers, N.Y. St. Dent. J., 27: 75 (1961).Google Scholar
  15. 13.
    A. Schatz and J.J. Martin, J. Am. Dent. Assoc., 65: 368 (1962).Google Scholar
  16. 14.
    N.W. Johnson, Archs Oral Biol., 11: 1421 (1966).CrossRefGoogle Scholar
  17. 15.
    R.S. Manly and K.F. Manly, J. Dent. Res., 42: 565 (1963).CrossRefGoogle Scholar
  18. 16.
    H.M. Myers, J. Dent. Res., 42: 1547 (1963).Google Scholar
  19. 17.
    A.H. Meckel, Arch. Oral Biol., 10: 585 (1965).CrossRefGoogle Scholar
  20. 18.
    T.J. Roseman, W.L. Higuchi, B. Hodes and J.J. Herferren, J. Dent. Res., 48 (4): 509 (1969).CrossRefGoogle Scholar
  21. 19.
    F.Z. Saleeb and P.L. de Bruyn, Electroanal. Chem. and Interfac. Electrochem., 37: 99 (1972).CrossRefGoogle Scholar
  22. 20.
    P. Somasundaran, J. Coll. Interf. Sci., 27: 659 (1968).CrossRefGoogle Scholar
  23. 21.
    P. Somasundaran and G.E. Agar, Trans. AIME, 252: 348 (1972).Google Scholar
  24. 22.
    P. Somasundaran, in “Clean Surfaces, Their Preparation and Characterization for Interfacial Studies”, Marcel Dekker, N.Y. (1970).Google Scholar
  25. 23.
    Y.H. Wang, Zeta Potential Studies on Hydroxyapatite, M.S. Thesis, Columbia University (1975).Google Scholar
  26. 24.
    L.C. Bell, A.M. Posner and J.P. Quirk, Nature, 239: 515 (1972)CrossRefGoogle Scholar
  27. L.C. Bell, A.M. Posner and J.P. Quirk, J. Coll. Interf. Sci. 42: 250 (1973).CrossRefGoogle Scholar
  28. 25.
    K. Sollner, J. Dent. Res., 53: 266 (1974).Google Scholar
  29. 26.
    See J. Dent. Res., 53:308 (1974).Google Scholar
  30. 27.
    P. Somasundaran and R.D. Kulkarni, J. Coll. Interf. Sci., 45: 591 (1973).CrossRefGoogle Scholar
  31. 28.
    R.P. Bell and J.H.B. George, Transactions, Faraday Society, 46: 619 (1953).CrossRefGoogle Scholar
  32. 29.
    D.D. Hedberg, “Sargent Chart of Equilibrium Contents of Inorganic Compounds”, E.H. Sargent and Co., Chicago (1963).Google Scholar
  33. 30.
    C.D. Hodgman, R.C. Weast and S.M. Selby, “Handbook of Chemistry and Physics”, 42nd ed., The Chemical Rubber Publishing Co. (1961)Google Scholar
  34. 31.
    J. Bjerrum, G. Schwarzenbach and L.G. Sillen, “Stability Constants of Metal Ion Complexes, with Solubility Products of Inorganic Substances”, Part II, Special Publication No. 7, The Chemical Society, London (1958).Google Scholar
  35. 32.
    P. Ney, “Zeta-Potentiale und Flotierbarkeit Von Minevalen, Springer-Verlag”, New York, (1973).Google Scholar
  36. 33.
    J.D. Miller and J.B. Hiskey, J. Coll. Interf. Sci., 41: 567 (1972).CrossRefGoogle Scholar
  37. 34.
    N.A. Lang, ed. “Handbook of Chemistry”, 10th ed., McGraw Hill, New York (1961).Google Scholar
  38. 35.
    S. Phillips, R.D. Kulkarni and P. Somasundaran, Effects of Pretreatment with Fluoride Solutions on Apatite Electrochemical Properties, Annual Meeting of American Association of Dental Research, 1975; J. Dent. Res., Feb., 1975, p. 180.Google Scholar
  39. 36.
    J. Amankonah and P. Somasundaran, unpublished results.Google Scholar
  40. 37.
    G.H. Nancollas, Z. Amjad and P. Koutsoukas, Calcium PhosphatesSpeciation, Solubility and Kinetic Considerations, in “Chemical Modelling in Aqueous Systems”, J.A. Jenne, ed., ACS, Washington, D.C. (1979).Google Scholar
  41. 38.
    Y. Avnimelech, E.C. Moreno and W.E. Brown, Solubility and Surface Properties of Finely Divided Hydroxyapatite, J. Res. NBS, 77A (1): 149 (1973).CrossRefGoogle Scholar
  42. 39.
    R.K. Mishra, S. Chander and D.W. Fuerstenau, Colloids and Surfaces, 1: 105 (1980).CrossRefGoogle Scholar
  43. 40.
    S. Chander and D.W. Fuerstenau, Colloids and Surfaces, 4: 101 (1982).CrossRefGoogle Scholar
  44. 41.
    G.C. Sresty, A. Raja and P. Somasundaran, in “Recent Developments in Separation Science”, Vol. 4, CRC Press, West Palm Beach, FL (1978).Google Scholar
  45. 42.
    A.F. Hollander, P. Somasundaran and C.C. Gryte, in “Adsorption from Aqueous Solution”, P. Tewari, ed., Plenum Press, New York (1981).Google Scholar
  46. 43.
    B.M. Moudgil and P. Somasundaran, Adsorption of Charged and Uncharged Polyacrylamides on Hematite, SME Preprint 82–160.Google Scholar
  47. 44.
    P. Somasundaran and L.T. Lee, Separation Science and Technology, 16: 1475 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • P. Somasundaran
    • 1
  • Y. H. C. Wang
    • 1
  1. 1.School of Engineering and Applied ScienceColumbia UniversityNew YorkUSA

Personalised recommendations