Roles of Octacalcium Phosphate in Surface Chemistry of Apatites

  • W. E. Brown
  • M. Mathew
  • L. C. Chow


This paper reviews the effects of octacalcium phosphate (OCP), Ca8H2(PO4)6·5H2O, on the interfacial and colloidal properties of apatitic precipitates. The structural deductions are based on a combination of well established crystallographic concepts1,2,3 and plausible projections regarding the chemical behavior of OCP.4,5 Although the colloidal nature of the systems makes difficult the verification of these properties, the ideas provide a substantive basis for interpretation of many experimental results. Apatitic systems are of such vital importance in so many areas, and the relationships between OCP and hydroxyapatite (OHAp), Ca5(PO4)3OH, are so close and so ubiquitous that the possibilities described here cannot be ignored. For example, the morphology of the apatitic crystallites in bones and teeth appear to derive from OCP; the consequent effects of crystallite morphology on the mechanical properties of these tissues are of great physiological importance. OCP seems to play important roles, also, in establishing the composition, solubility, reactivity, interfacial energy, nucleation, growth, and crystal-growth poisoning of apatitic materials. These all affect the surface and colloidal properties of apatitic precipitates.


Interfacial Energy Hydrated Layer Amorphous Calcium Phosphate Octacalcium Phosphate Apatitic Precipitate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Christoffersen and M. R. Christoffersen, Kinetics of dissolution of calcium hydroxyapatite IV. The effect of some biologically important inhibitors, J. Cryst. Growth 53: 42 (1981).CrossRefGoogle Scholar
  2. 2.
    G. H. Nancollas, Enamel apatite nucleation and crystal growth, J. Dent. Res. 58 (B): 861 (1979).Google Scholar
  3. 3.
    C. F. Frank, Capillary equilibria of dislocated crystals, Acta Crystallogr. 4: 497 (1951).CrossRefGoogle Scholar
  4. 4.
    W. E. Brown, M. Mathew and M. S. Tung, The crystal chemistry of octacalcium phosphate, Prog. Cryst. Growth Charact. 4: 59 (1981).CrossRefGoogle Scholar
  5. 5.
    W. E. Brown, J. R. Lehr, J. P. Smith and A. W. Frazier, Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite, Nature (London) 196: 1050 (1962).CrossRefGoogle Scholar
  6. 6.
    W. E. Brown, The crystal structure of octacalcium phosphate, Nature (London) 196: 1048 (1962).CrossRefGoogle Scholar
  7. 7.
    M. Mathew and W. E. Brown unpublished results.Google Scholar
  8. 8.
    M. I. Kay, R. A. Young and A. S. Posner, Crystal structure of hydroxyapatite, Nature (London) 204: 1050 (1964).CrossRefGoogle Scholar
  9. 9.
    W. E. Brown, L. W. Schroeder and J. S. Ferris, Interlayering of crystalline octacalcium phosphate and hydroxyapatite, J. Phys. Chem. 83: 1385 (1979).CrossRefGoogle Scholar
  10. 10.
    M. Kukura, L. C. Bell, A. M. Posner and J. P. Quirk, Kinetics of isotope exchange on hydroxyapatite, Soil Sci. Soc. Amer., Proc. 37: 364 (1973).CrossRefGoogle Scholar
  11. 11.
    M. U. Nylen, E. D. Eanes and K. A. Omnell, Crystal growth in rat enamel, J. Cell Biol. 18: 109 (1963).CrossRefGoogle Scholar
  12. 12.
    H. J. Hohling, J. Althoff, R. H. Barckhaus, E. -R. Krefting, G. Lissner and P. Quint (1981) “Early stages of crystal nucleation in hard tissue formation,” International Cell Biology 1980–81, Ed. H. G. Schweiger, Berlin: Springer.Google Scholar
  13. 13.
    N. S. Chickerur, M. S. Tung and W. E. Brown, A mechanism for incorporation of carbonate into apatite, Calcif. Tissue Int. 32: 55 (1980).CrossRefGoogle Scholar
  14. 14.
    W. E. Brown, M. S. Tung and L. C. Chow, Role of octacalcium phosphate in the incorporation of impurities into apatites, International Congress on Phosphorus Compounds, Boston, 59–71 (1980).Google Scholar
  15. 15.
    S. B. Hendricks and W. L. Hill, Nature of bone and phosphate rock, Proc. Nat. Acad. Sci. (U.S.) 36: 731 (1950).CrossRefGoogle Scholar
  16. 16.
    W. F. Neuman and M. W. Neuman, “The Chemical Dynamics of Bone Mineral,” Univ. Chicago Press, Chicago, 1958.Google Scholar
  17. 17.
    D. W. Holcomb and R. A. Young, Thermal decomposition of human tooth enamel, Calcif. Tissue Int. 31: 189 (1980).CrossRefGoogle Scholar
  18. 18.
    A. S. Posner and F. Betts, Synthetic amorphous calcium phosphate and its relation to bone mineral structure, Accounts Chem. Res. 9: 273 (1975).CrossRefGoogle Scholar
  19. 19.
    M. J. Dallemagne and C. Fabry, Structure of bone salts, Ciba Foundation Symposium on Bone Structure and Metabolism, 1955, 14–35 (1956).Google Scholar
  20. 20.
    M. D. Francis and N. C. Webb, Hydroxyapatite formation from hydrated calcium monohydrogen phosphate precursor, Calcif. Tissue Res. 6: 335 (1971).CrossRefGoogle Scholar
  21. 21.
    G. Williams and J. D. Sallis, Structural factors influencing the ability of compounds to inhibit hydroxyapatite formation, Calcif. Tissue Int. 34: 169 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • W. E. Brown
    • 1
  • M. Mathew
    • 1
  • L. C. Chow
    • 1
  1. 1.American Dental Association Health Foundation Research UnitNational Bureau of StandardsUSA

Personalised recommendations