Advertisement

Flow Properties of Adhesives

  • Irvin M. Krieger

Abstract

Rheology is defined as the study of deformation and flow of matter. In actual practice, its scope is narrower than permitted by this definition. Rheology ordinarily excludes gases, and gives short shrift to Newtonian liquids and Hookean solids. Nonlinear fluids and viscoelastic solids are the systems which are most interesting to rheologists. On a molecular scale, these Theologically interesting materials are composed of molecules or other particles which are very large compared to the atoms or molecules of the elements, yet are small enough to undergo appreciable Brownian movement at ordinary temperatures.

Keywords

Shear Stress Shear Rate Shear Strain Intrinsic Viscosity Dynamic Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, Ann. Phys. 17, 459 (1905);Google Scholar
  2. 1a.
    A. Einstein, Ann. Phys. 19, 271 (1906);Google Scholar
  3. 1b.
    A. Einstein, Ann. Phys. 34, 591 (1911).CrossRefGoogle Scholar
  4. 2.
    W. Kuhn and H. Kuhn, Helv. Chim. Acta 28, 97 (1945).CrossRefGoogle Scholar
  5. 3.
    R. Simha, J. Phys. Chem. 44, 25 (1940);CrossRefGoogle Scholar
  6. 3a.
    R. Simha, J. Chem. Phys. 13, 188 (1945).CrossRefGoogle Scholar
  7. 4.
    G. I. Taylor, Proc. R. Soc. London, Ser. A 145, 501 (1934).Google Scholar
  8. 5.
    H. Mark, Der Fester Körper, Hirzel, Leipzig (1938).Google Scholar
  9. 6.
    R. Houwink, J. Prakt. Chem. 157, 15 (1940).CrossRefGoogle Scholar
  10. 7.
    I. R. Rutgers, Rheol. Acta 2, 305 (1962).CrossRefGoogle Scholar
  11. 8.
    H. Eilers, Kolloid-Z. 97, 913 (1941);Google Scholar
  12. 8a.
    H. Eilers, Kolloid-Z. 102, 154 (1943).CrossRefGoogle Scholar
  13. 9.
    S. Arrhenius, Z. Phys. Chem. (Leipzig) 1, 285 (1887).Google Scholar
  14. 10.
    M. Mooney, J. Colloid Sci. 6, 162 (1951).CrossRefGoogle Scholar
  15. 11.
    T. J. Dougherty, Ph.D. thesis, Case Institute of Technology (1959).Google Scholar
  16. 12.
    I. M. Krieger, Adv. Colloid Interface Sci. 3, 111 (1972).CrossRefGoogle Scholar
  17. 13.
    I. M. Krieger and S. H. Maron, J. Colloid Sci. 6, 528 (1951).CrossRefGoogle Scholar
  18. 14.
    R. Buscall, J. W. Goodwin, M. W. Hawkins, and R. H. Ottewill, J. Chem. Soc, Faraday Trans. 178, 2873, 2889 (1982).Google Scholar
  19. 15.
    R. L. Hoffman, J. Colloid Interface Sci. 46, 491 (1974).CrossRefGoogle Scholar
  20. 16.
    I. M. Krieger, Trans. Soc. Rheol. 7, 101 (1963).CrossRefGoogle Scholar
  21. 17.
    C. E. Chaffey, Colloid Poly m. Sci. 255, 691 (1977).CrossRefGoogle Scholar
  22. 18.
    M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
  23. 19.
    M. Doi and S. F. Edwards, J. Chem. Soc, Faraday Trans. 2 74, 1789, 1802, 1818 (1978);Google Scholar
  24. 19a.
    M. Doi and S. F. Edwards, J. Chem. Soc, Faraday Trans. 75, 38 (1979).CrossRefGoogle Scholar
  25. 20.
    C. F. Curtiss and R. B. Bird, J. Chem. Phys. 74, 2016, 2026 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Irvin M. Krieger
    • 1
  1. 1.Center for Adhesives, Sealants, and CoatingsCase Western Reserve UniversityClevelandUSA

Personalised recommendations