Ultrasonic Nondestructive Evaluation Technology for Adhesive Bond and Composite Material Inspection

  • Joseph L. Rose


Widespread use of lightweight composite materials and adhesively bonded structures has led to an urgent need for developing a reliable inspection technology for these materials. The possible anisotropic and inhomogeneous nature of these materials combined with the applications of new joint configurations has made the science and engineering of nondestructive inspection quite challenging and complex. In fact, one of the major limitations in the use of adhesives as a structural element is associated with the difficulty encountered in making an accurate determination of bond quality or potential performance after the joint has been completely assembled. An important aspect of using adhesives is therefore the associated need to develop a nondestructive evaluation technique that makes use of a simple measurement for predicting the potential structural bonding performance level.


Wave Velocity Ultrasonic Wave Shear Wave Velocity Critical Angle Adhesive Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Segal and J. L. Rose, Nondestructive testing of adhesive bond joints, in: Research Techniques in Nondestructive Testing, Vol. IV (R. S. Sharpe, ed.), Chapter 8, Academic Press, London (1980).Google Scholar
  2. 2.
    J. L. Rose and P. A. Meyer, Ultrasonic procedures for the determination of bond strength, Mater. Eval. 42, 109 (1973).Google Scholar
  3. 3.
    F. H. Chang, J. C. Couchman, J. R. Bell, and D. E. Gordon, Correlations of NDE parameters with adhesive bond strength in multi-layered structures, Proc. ASNT 10th Symposium on NDT, San Antonio, Texas, pp. 266–273 (April 23–25, 1975).Google Scholar
  4. 4.
    P. A. Meyer and J. L. Rose, Ultrasonic attenuation effects associated with the physical modeling of adhesive bonds, J. Appl. Phys. 48, 3705 (1977).CrossRefGoogle Scholar
  5. 5.
    T. Chernobelskays, S. Kovnovich, and E. Harnik, The testing of adhesive bonded joints by a very high-resolution ultrasonic probe, J. Appl. Phys. 12, 815 (1979).Google Scholar
  6. 6.
    H.H. Chaskelis and A. V. Clark, Ultrasonic nondestructive bond evaluation: An analysis of the problem, Mater. Eval. 38, 20–26, 34 (1980).Google Scholar
  7. 7.
    G. A. Alers and R. K. Elsley, Application of quantitative ultrasonic signal analysis to adhesive bond strength prediction, Structural Adhesives and Bonding, pp. 119–137 (March 13–15, 1970).Google Scholar
  8. 8.
    G. A. Budenkov, Yu. V. Volegov, V. A. Pepelyaev, and V. I. Redko, The possibility of testing the strength of adhesive joints by means of ultrasonic interference waves, Ultrasonics 7 194 (1977).Google Scholar
  9. 9.
    J. L. Rose, Aspects of the adhesive bond strength classification problem, in: Durability of Adhesive Bonded Structures, pp. 389–398, Proc. Applied Polymer Symposium 32, Pitcatinny Arsenal, NJ (October 27–29, 1976).Google Scholar
  10. 10.
    W. E. Woodmansee, Through-transmission ultrasonic attenuation measurements on adhesively-bonded structures, in: Ultrasonic Materials Characterization, NBS SP 596, pp. 425–432, Proc. 1st International Symposium, Gaitherburg, MD (June 7–9, 1978).Google Scholar
  11. 11.
    S.I. Rokhlin, M. Hefets, and M. Rosen, An ultrasonic interface-wave method for predicting the strength of adhesive bonds, J. Appl. Phys. 52, 2847 (1981).CrossRefGoogle Scholar
  12. 12.
    B. B. Djordjevic and J. D. Venables, Nondestructive evaluation of bonded metal and composite structures, 13th Symposium on Nondestructive Evaluation Proc, pp. 68–76, San Antonio, Texas (April 21–23, 1981).Google Scholar
  13. 13.
    R. S. Williams and P. E. Zwicke, Assessment of adhesive properties using pattern recognition analysis of ultrasonic NDE data, Mater. Eval. 40, 312 (1982).Google Scholar
  14. 14.
    R. J. Schliekelmann, Nondestructive testing of adhesive bonded joints, Fokker-VFW Technical Report, NTIS (N81–28190), 38 pp. (April, 1982).Google Scholar
  15. 15.
    G. C. Knollman and J. J. Hartog, Shear modulus gradients in adhesive interfaces as determined by means of ultrasonic Rayleigh waves, J. Appl. Phys. 53, Part I, 1516 (1982).CrossRefGoogle Scholar
  16. 16.
    G. J. Curtis, Nondestructive testing of adhesively bonded structures with acoustic methods, Ultrasonic Testing: Non-Conventional Testing Techniques, pp. 495–554 (1982).Google Scholar
  17. 17.
    J. L. Rose, M. J. Avioli, and R. Bilgram, A feasibility study on the nondestructive evaluation of an adhesively bonded metal to metal bond: An ultrasonic pulse echo approach, Br. J. Non-Destr. Test, 25, 67 (1983).Google Scholar
  18. 18.
    J. B. Nestleroth, J. L. Rose, D. Lecuru, and E. Budillion, An ultrasonic F-scan inspection technique for the detection of surface preparation variances in adhesively bonded structures, Proceedings of the Thirteenth Annual Review of Progress in Quantitative Nondestructive Evaluation, La Jolla, CA, Volume 6B, pp. 1787–1795 (August 3–8, 1986).Google Scholar
  19. 19.
    S.I. Rokhlin and D. Marom, Study of adhesive bonds using low frequency obliquely incident ultrasonic waves, J. Acoust. Soc. Am. 80, 585–590 (1986).CrossRefGoogle Scholar
  20. 20.
    A. Pilarski, Ultrasonic wave propagation in a layered medium under different boundary conditions, Arch. Acoust. 7, 61 (1982).Google Scholar
  21. 21.
    A. Pilarski, Interface waves in the case of bond with variable rigidity (in Polish), IFTR Reports, 32, Institute of Fundamental Technological Research, Warsaw, Poland (1983).Google Scholar
  22. 22.
    J. L. Rose, A. Pilarski, and J. Da-Le, A model for transverse wave sensitivity to poor adhesion in adhesively bonded joints, J. Acoust. Soc. Am. 80, Supplement 1, S105 (1986).CrossRefGoogle Scholar
  23. 23.
    R. O. Claus and R. A. Kline, Adhesive bondline interrogation using Stonely wave methods, J. Appl. Phys. 50, 806 (1979).CrossRefGoogle Scholar
  24. 24.
    A. Pilarski, Ultrasonic evaluation of the adhesion degree in layered joints, Mater. Eval. 43, 765 (1985).Google Scholar
  25. 25.
    J. L. Rose, Elements of a feature based ultrasonic inspection system, Mater. Eval. 40, 210–218 (1984).Google Scholar
  26. 26.
    M. J. Avioli, Y. H. Jeong, and J. L. Rose, Utility of a probability density function curve and F-maps in composite material inspection, Exp. Mech. 22, 155–160 (1982).CrossRefGoogle Scholar
  27. 27.
    J. B. Nestleroth, J. L. Rose, M. Bashyam, and K. Subramanian, Physically based ultrasonic feature mapping for anomaly classification in composite materials, Mater. Eval. 43, 541–546 (1985).Google Scholar
  28. 28.
    Y. Bar-Cohen, NDE fiber-reinforced composite materials—A review, Mater. Eval. 44, 446–454 (1986).Google Scholar
  29. 29.
    K. Subramanian and J. L. Rose, C-scan testing for complex parts, Conference of American Society of Metals, Orlando, Florida, October 4–9, 1986, Advanced Materials and Processes, Vol. 131, Issue 2 (February 1987).Google Scholar
  30. 30.
    J. L. Rose and A. Pilarski, Surface and plate waves in layered structures, Mater. Eval. 46, 598–605 (1988).Google Scholar
  31. 31.
    J. L. Rose, P. Karpur, and V. Newhouse, The utility of split-spectrum processing in ultrasonic NDE, Mater. Eval. 46, pp. 114–122(1988).Google Scholar
  32. 32.
    A. Pilarski and J. L. Rose, A transverse wave ultrasonic technique for interfacial weakness detection in adhesive bonds, J. Appl. Phys. 63, 300–307 (1988).CrossRefGoogle Scholar
  33. 33.
    J. L. Rose, J. B. Nestleroth, and K. Balasubramaniam, Utility of ultrasonic feature mapping in nondestructive evaluation, Ultrasonics 26, 124–131 (1988).CrossRefGoogle Scholar
  34. 34.
    J. B. Nestleroth, J. L. Rose, D. Lecuru, and E. Budillion, An ultrasonic F-scan inspection technique for the detection of surface preparation variances in adhesively bonded structures, in: Review of Progress in Quantitative Nondestructive Evaluation, Vol. 6B, Plenum Press, New York (1987).Google Scholar
  35. 35.
    A. Pilarski and J. L. Rose, Ultrasonic oblique incidence for improved sensitivity in interface weakness determination, NDT International 21, 241–246 (1988).CrossRefGoogle Scholar
  36. 36.
    A. Pilarski, J. L. Rose, K. Balasubramaniam, and D. Lecuru, Angular characteristics of reflectivity for layered structures with imperfections, Proceedings of the Ultrasonic International Conference, England (July 6–9, 1987).Google Scholar
  37. 37.
    A. Pilarski, J. L. Rose, J. Dale, K. Balasubramaniam, and D. Lecuru, An ultrasonic oblique incidence technique for adhesive bond quality evaluation, Proceedings of the 4th European NDT Conference, September 13–17, 1987, London, UK, Vol. 4, pp. 2237–2244 Pergamon Press, New York (1987).Google Scholar
  38. 38.
    J. L. Rose and A. Pilarski, An ultrasonic NDE surface wave feature matrix technique for composite materials, The Joint ASME/SES Applied Mechanics and Engineering Sciences Conference, AMD-Vol. 90, Berkeley, CA (June 20–22, 1988).Google Scholar
  39. 39.
    S.I. Rokhlin and D. Marom, Study of adhesive bonds using low frequency obliquely incident ultrasonic waves, J. Acoust. Soc. Am. 80, 585–590 (1986).CrossRefGoogle Scholar
  40. 40.
    Y. Tsukahara and K. Ohira, Detection of Smooth Bondings of Polymer Coatings by Ultrasonic Spectroscopy, Ultrasonics 27, 3–7 (1989).CrossRefGoogle Scholar
  41. 41.
    J. L. Rose, J. Dale, T. D. K. Ngoc, and K. Balasubramaniam, Evaluation of Various Interface Layer Models for Ultrasonic Inspection of Weak Bonds, Rev. Prog. Quantitative Non-Destr. Eval. (to be published).Google Scholar
  42. 42.
    J. L. Rose, J. Ditri, and Y. Huang, Ultrasonic NDE for Advanced Material Property Determination, Proceedings of the 21st International SAMPE Technical Conference (Wegman, Kliger, and Hogan, eds.), Vol. 21, pp. 221–230, SAMPE, Covina, CA (1989).Google Scholar
  43. 43.
    J. L. Rose, A. Pilarski, K. Balasubramaniam, A. Tverdokhlebov, and J. Ditri, Ultrasonic Wave Considerations for the Development of an NDE Feature Matrix for Anisotropic Media, J. Eng. Mater. Technol. 111, 255–262 (1989).CrossRefGoogle Scholar
  44. 44.
    J. L. Rose, K. Balasubramaniam, and A. Tverdokhlebov, A Numerical Integration Green’s Function Model for Ultrasonic Field Profiles in Mildly Anisotropic Media, J. NDE 8(3), pp. 165–179, Plenum Press, New York (1989).Google Scholar
  45. 45.
    J. L. Rose, A. Pilarski, and Y. Huang, Surface Wave Utility in Composite Material Characterization, Res. Non-Destr. Eval., Vol. 1, pp. 247–265, Springer-Verlag, New York (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Joseph L. Rose
    • 1
  1. 1.Department of Mechanical EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations