The Use of Molecular Biology to Study Sperm Function

  • Erwin Goldberg


Current molecular biology technology provides an increased level of sensitivity for the analysis of sperm structure and function. Excellent laboratory manuals are available that provide familiarity with the few basic concepts required for mastery of these techniques (Maniatis et al.,1982; Ausubel et al.,1987; Berger and Kimmel, 1987). Therefore, this chapter does not detail such laboratory procedures but rather attempts to review the recent literature in which sperm function has been studied by using the tools of molecular biology. Basically, I focus on the investigations that involve DNA and RNA isolation, cloning, and analysis to shed light on the mechanisms whereby the spermatozoan acquires the unique properties necessary to achieve success in accomplishing its primary function, fertilization of the egg. This overview is intended to be instructive rather than exhaustive, and I hope it will provide a resource with which to initiate further study of fertilization.


Guanylate Cyclase Histone Gene Round Spermatid Sperm Function Pachytene Spermatocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adham, I. M., Klemm, U., Maier, W.-M., Hoyer-Fender, S., Tsaousidou, S., and Engel, W, 1989, Molecular cloning of preproacrosin and analysis of its expression pattern in spermatogenesis, Eur. J. Biochem. 182: 563–568.PubMedCrossRefGoogle Scholar
  2. Alvarez, J. G., and Storey, B. T., 1984, Assessment of cell damage caused by spontaneous lipid peroxidation in rabbit sperm, Biol. Reprod. 30: 323–331.PubMedCrossRefGoogle Scholar
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Smith, J. A., Seidman, J. G., and Struhl, K., eds., 1987, Current Protocols in Molecular Biology, John Wiley & Sons, New York.Google Scholar
  4. Baba, T., Watanabe, K., Kashiwabara, S.-I., and Arai, Y., 1989, Primary structure of human proacrosin deduced from its cDNA sequence, FEBS Lett. 244: 296–300.PubMedCrossRefGoogle Scholar
  5. Bentley, J. K., and Garbers, D. L., 1986, Retention of the speract receptor by isolated plasma membranes of sea urchin spermatozoa, Biol. Reprod. 34: 413–421.PubMedCrossRefGoogle Scholar
  6. Berger, S. L., and Kimmel, A. R., eds., 1987, Methods in Enzymology, Vol. 152, Guide to Molecular Cloning Techniques, Academic Press, Orlando, FL.Google Scholar
  7. Bhatnagar, Y. M., Romrell, L. J., and Bellve, A. R., 1985, Biosynthesis of specific histones during meiotic prophase of mouse spermatogenesis, Biol. Reprod. 32: 599–609.PubMedCrossRefGoogle Scholar
  8. Blanco, A., Burgos, C., Gerez de Burgos, N. M., and Montamat, E. E., 1976, Properties of the testicular lactate dehydrogenase isoenzyme, Biochem. J. 153: 165–172.PubMedGoogle Scholar
  9. Braun, R. E., Peschon, J. J., Behringer, R. R., Brinster, R. L., and Palmiter, R. D., 1989a, Protamine 3’-untranslated sequences regulate temporal translational control and subcellular localization of growth hormone in spermatids of transgenic mice. Genes Dey. 3: 793–802.CrossRefGoogle Scholar
  10. Braun, R. E., Behringer, R. R., Peschon, J. J., Brinster, R. L., and Palmiter, R. D., 19896, Genetically haploid spermatids are phenotypically diploid, Nature 337: 373–376.CrossRefGoogle Scholar
  11. Burke, D. J., and Ward, S., 1983, Identification of a large multigene family encoding the major sperm protein of Caenorhabditis elegans, J. Mol. Biol. 171: 1–29.PubMedCrossRefGoogle Scholar
  12. Busslinger, M., and Barberis, A., 1985, Synthesis of sperm and late histone cDNAs of the sea urchin with a primer complementary to the conserved 3’ terminal palindrome: Evidence for tissue-specific and more general histone gene variants, Proc. Natl. Acad. Sci. U.S.A. 82: 5676–5680.PubMedCrossRefGoogle Scholar
  13. Dan, J. C., 1967, Acrosome reaction and lysins, in: Fertilization, Vol. 1 ( C. B. Metz, and A. Monroy, eds.), Academic Press, New York, pp. 237–293.Google Scholar
  14. Dangott, L. J., and Garbers, D. L., 1987, Further characterization of a speract receptor on sea urchin spermatozoa, in: Cell Biology of the Testis and Epididymis, Volume 513 ( M.-C. Orgebin-Crist and B. J. Danzo, eds.), The New York Academy of Sciences, New York, pp. 274–285.Google Scholar
  15. Dangott, L. J., Jordan, J. E., Bellet, R. A., and Garbers, D. L., 1989, Cloning of the mRNA for the protein that crosslinks to the egg peptide speract, Proc. Natl. Acad. Sci. U.S.A. 86: 2128–2132.PubMedCrossRefGoogle Scholar
  16. Dobner, P R., Kislauskis, E., Wentworth, B. M., and Villa-Komaroff, L., 1987, Alternative 5’ exons either provide or deny an initiator methionine codon to the same a-tubulin coding region, Nucleic Acids Res. 15 (1): 199–218.PubMedCrossRefGoogle Scholar
  17. Edwards, Y. H., Povey, S., LeVan, K. M., Driscoll, C. E., Milian, J. L., and Goldberg, E., 1987, Locus determining the human sperm-specific lactate dehydrogenase, LDHC, is syntenic with LDHA, Dev. Biol. 8: 219–232.Google Scholar
  18. Edwards, Y., West, L., Van Heyningen, V, Cowell, J., and Goldberg, E., 1989, Regional localization of the sperm-specific lactate dehydrogenase, LDHC, gene on human chromosome 11, Ann. Hum. Genet. 53: 215–219PubMedCrossRefGoogle Scholar
  19. Erickson, R. P., Friend, D. S., and Tennenbaum, D., 1975, Localization of lactate dehydrogenase-X on the surfaces of mouse spermatozoa, Exp. Cell Res. 91: 1–5.PubMedCrossRefGoogle Scholar
  20. Fujimoto, H., Erickson, R. P, and Toné, S., 1988, Changes in polyadenylation of lactate dehydrogenase-X mRNA during spermatogenesis in mice, Mol. Reprod. Dev. 1: 27–34.PubMedCrossRefGoogle Scholar
  21. Gao, B., Klein, L. E., Britten, R. J., and Davidson, E. H., 1986, Sequence of mRNA coding for bindin, a species-specific sea urchin sperm protein required for fertilization, Proc. Natl. Acad. Sci. U.S.A. 83:8634–8638.PubMedCrossRefGoogle Scholar
  22. Gavella, M., and Cvitkovic, P, 1985, Semen LDH-X deficiency and male infertility, Arch. Androl. 15: 173–176.PubMedCrossRefGoogle Scholar
  23. Gold, B., Fujimoto, H., Kramer, J. M., Erickson, R. P, and Hecht, N. B., 1983, Haploid accumulation and translational control of phosphoglycerate kinase-2 messenger RNA during mouse spermatogenesis, Dev. Biol. 98: 392–399.PubMedCrossRefGoogle Scholar
  24. Goldberg, E., 1977, Isozymes in testes and spermatozoa, in: Isozymes: Current Topics in Biological and Medical Research, Vol. 1 ( M. C. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds.), Alan R. Liss, New York, pp. 79–124.Google Scholar
  25. Goldberg, E., Sberna, D., Wheat, T. E., Urbanski, G. J., and Margoliash, E., 1977, Cytochrome c: Immunofluorescent localization of the testis-specific form, Science 196: 1010–1012.PubMedCrossRefGoogle Scholar
  26. Goldman, D. S., Kiessling, A. A., Millette, C. F., and Cooper, G. M., 1987, Expression of c-mos RNA in germ cells of male and female mice, Proc. Natl. Acad. Sci. U.S.A. 84: 4509–4513.PubMedCrossRefGoogle Scholar
  27. Hake, L. E., Alcivar, A. A., and Hecht, N. B., 1990, Changes in mRNA length accompany translational regulation of the somatic and testis-specific cytochrome c genes during spermatogenesis in the mouse, Development 110: 249–257.PubMedGoogle Scholar
  28. Hecht, N. B., 1987, Gene expression during spermatogenesis, in: Cell Biology of the Testis and Epididymis, Vol. 513 ( M.-C. Orgebin-Crist and B. J. Danzo, eds.), The New York Academy of Sciences, New York, pp. 90–101Google Scholar
  29. Hecht, N. B., 1988, Post-meiotic gene expression during spermatogenesis, in: Meiotic Inhibition: Molecular Control of Meiosis ( E P Haseltine, ed.), Alan R. Liss, New York, pp. 291–313.Google Scholar
  30. Hecht, N. B., Kleene, K. C., Distel, R. J., and Silver, L. M., 1984, The differential expression of the actins and tubulins during spermatogenesis in the mouse, Exp. Cell Res. 153: 275–279.PubMedCrossRefGoogle Scholar
  31. Hecht, N. B., Distel, R. J., Yelick, P C., Tanhauser, S. M., Driscoll, C. E., Goldberg, E., and Ting, K. S. K.,1988, Localization of a highly divergent mammalian testicular a tubulin that is not detectable in brain, Mol. Cell. Biol. 8(2):996–1000.Google Scholar
  32. Hennig, B., 1975, Change of cytochrome c structure during development of the mouse, Eur. J. Biochem. 55: 167–183.PubMedCrossRefGoogle Scholar
  33. Herr, J. C., Wright, R. M., John, E., Foster, J., and Flickinger, C. J., 1990, Identification of human acrosomal antigen SP-10 in primates and pigs, Biol. Reprod. 42: 377–382.PubMedCrossRefGoogle Scholar
  34. Hintz, M., and Goldberg, E., 1977, Immunohistochemical localization of LDH-X during spermatogenesis in mouse testes, Dev. Biol. 57: 375–384.PubMedCrossRefGoogle Scholar
  35. Holmes, R. S., 1972, Evolution of lactate dehydrogenase genes, FEBS Lett. 28: 51–55.PubMedCrossRefGoogle Scholar
  36. Iatrou, K., and Dixon, G. H., 1977, Messenger RNA sequences in the developing trout testis, Cell 10: 433–441.PubMedCrossRefGoogle Scholar
  37. Kim, E., Waters, S. H., Hake, L. E., and Hecht, N. B., 1989, Identification and developmental expression of a smooth-muscle y-actin in postmeiotic male germ cells of mice, Mol. Cell. Biol. 9 (5): 1875–1881.PubMedGoogle Scholar
  38. Kim, I. C., and Nolla, H., 1986, Antigenic analysis of testicular cytochromes c using monoclonal antibodies, Biochem. Cell Biol. 64: 1211–1217.PubMedCrossRefGoogle Scholar
  39. Kim, Y.-J., Hwang, I., Tres, L. L., Kierszenbaum, A. L., and Chae, C.-B., 1987, Molecular cloning and differential expression of somatic and testis-specific H2B histone genes during rat spermatogenesis, Dev. Biol. 124: 23–34.PubMedCrossRefGoogle Scholar
  40. Klass, M. R., Kinsley, S., and Lopez, L. C., 1984, Isolation and characterization of a sperm-specific gene family in the nematode Caenorhabditis elegans, Mol. Cell. Biol. 4 (3): 529–537.PubMedGoogle Scholar
  41. Klass, M., Ammons, D., and Ward, S., 1988, Conservation in the 5’ flanking sequences of transcribed members of the Caenorhabditis elegans major sperm protein gene family, J. Mol. Biol. 199: 15–22.PubMedCrossRefGoogle Scholar
  42. Kramer, J. M., 1981, Immunofluorescent localization of PGK-1 and PGK-2 isozymes within specific cells of the mouse testis, Dev. Biol. 87: 30–36.PubMedCrossRefGoogle Scholar
  43. Krawczyk, Z., Wisniewski, J., and Beisiada, E., 1987, A hsp70-related gene is constitutively highly expressed in testis of rat and mouse, Mol. Biol. Rep. 12: 27–34.PubMedCrossRefGoogle Scholar
  44. Krawczyk, Z., Mali, P., and Parvinen, M., 1988, Expression of a testis-specific hsp70 gene-related RNA in defined stages of rat seminiferous epithelium, J. Cell Biol. 107: 1317–1323.PubMedCrossRefGoogle Scholar
  45. Kuhn, R., Schafer, U., and Schafer, M. 1988, Cis-acting regions sufficient for spermatocyte-specific transcriptional and spermatid-specific translational control of the Drosophila melanogaster gene mst(3)gl-9, EMBO J. 7: 447–454.PubMedGoogle Scholar
  46. Li, S. S.-L., O’Brien, D. A., Hou, E. W, Versola, J., Rockett, D. L., and Eddy, E. M., 1989, Differential activity and synthesis of lactate dehydrogenase isozymes A (muscle), B (heart), and C (testis) in mouse spermatogenic cells, Biol. Reprod. 40: 173–180.PubMedCrossRefGoogle Scholar
  47. Lieber, T., Weisser, K., and Childs, G., 1986, Analysis of histone gene expression in adult tissues of the sea urchins Strongylocentrotus purpuratus and Lytechinus pictus: Tissue-specific expression of sperm histone genes, Mol. Cell. Biol. 6 (7): 2602–2612.PubMedGoogle Scholar
  48. Maniatis, T., Fritsch, E. F, and Sambrook, J., 1982, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  49. Maxson, R. E., and Egrie J. C., 1980, Expression of maternal and paternal histone genes during early cleavage stages of the echinoderm hybrid Strongylocentrotus purpuratus x Lytechinus pictus, Dev. Biol. 74: 335–342.PubMedCrossRefGoogle Scholar
  50. McCarrey, J. R., 1987, Nucleotide sequence of the promoter region of a tissue-specific human retroposon: Comparison with its housekeeping progenitor, Gene 61: 291–298.PubMedCrossRefGoogle Scholar
  51. McCarrey, J. R., and Thomas, K., 1987, Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene, Nature 326: 501–505.PubMedCrossRefGoogle Scholar
  52. Meistrich, M. L., Trostle, P. K., Frapart, M., and Erickson, R. P, 1977, Biosynthesis and localization of lactate dehydrogenase X in pachytene spermatocytes and spermatids of mouse testis, Dev. Biol. 60: 428–441.PubMedCrossRefGoogle Scholar
  53. Michiels, F, Gasch, A., Kaltschmidt, B., and Renkawitz-Pohl, R., 1989, A 14 bp promoter element directs the testis specificity of the Drosophila 12 tubulin gene, EMBO J. 8: 1559–1565.PubMedGoogle Scholar
  54. Milian, J. L., Driscoll, C. E., LeVan, K. M., and Goldberg, E., 1987, Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence, Proc. Natl. Acad. Sci. U.S.A. 84: 5311–5315.CrossRefGoogle Scholar
  55. Morales, C. R., Alcivar, A. A., Hecht, N. B., and Griswold, M. D., 1989, Specific mRNAs in Sertoli and germinal cells of testes from stage synchronized rats, Mol. Endocrinol. 3: 725–733.PubMedCrossRefGoogle Scholar
  56. Mutter, G. L., and Wolgemuth, D. J., 1987, Distinct developmental patterns of c-mos protooncogene expression in female and male lAcouse germ cells, Proc. Natl. Acad. Sci. U.S.A. 84: 5301–5305.PubMedCrossRefGoogle Scholar
  57. Newrock, K. J., Alfgame, C. R., Nardi, R. V, and Cohen, L. H., 1977, Histone changes during chromatin remodeling in embryogenesis, Cold Spring Harbor Symp. Quant. Biol. 42: 421–431.CrossRefGoogle Scholar
  58. O’Brien, D. A., and Bellve, A. R., 1980, Protein constituents of the mouse spermatozoon, Dev. Biol. 75: 405–418PubMedCrossRefGoogle Scholar
  59. Olds-Clarke, P, 1988, Genetic analysis of sperm function in fertilization, Gamete Res. 20: 241–264.PubMedCrossRefGoogle Scholar
  60. Olivieri, G., and Olivieri, A., 1965, Autoradiographic study of nucleic acid synthesis during spermatogenesis in Drosophila melanogaster, Mutat. Res. 2: 366–380.PubMedCrossRefGoogle Scholar
  61. O’Rand, M. G., and Widgen, E. E., 1990, Molecular biology of a sperm antigen: Identification of the sequence of an autoantigenic epitope, in: Reproductive Immunology 1989 ( L. Mettler and W. D. Billington, eds.), Elsevier Scientific Publishers, Amsterdam, pp. 61–67.Google Scholar
  62. O’Rand, M. G., Widgren, E. E., and Fisher, S. J., 1988, Characterization of the rabbit sperm membrane autoantigen, RSA, as a lectin-like zona binding protein, Dev. Biol. 129: 231–240.PubMedCrossRefGoogle Scholar
  63. Osipova, T. N., Triebel, H., Bär, H., Zalenskaya, I. A., and Hartmann, M., 1985, Interaction of histone Hl from sea urchin sperm with superhelical and relaxed DNA, Mol. Biol. Rep. 10: 153–158.PubMedCrossRefGoogle Scholar
  64. Poccia, D., Salik, J., and Krystal, G., 1981 Transitions in histone variants of the male pronucleus following fertilization and evidence for a maternal store of cleavage-stage histones in the sea urchin egg, Dev. Biol. 82: 287–296.PubMedCrossRefGoogle Scholar
  65. Ponzetto, C., and Wolgemuth, D. J., 1985, Haploid expression of a unique c-abl transcript in the mouse male germ line, Mol. Cell Biol. 5: 1791–1794.PubMedGoogle Scholar
  66. Propst, F., Rosenberg, M. P., Oskarsson, M. K., Russell, L. B., Nguyen-Huu, M. C., Nadeau, J., Jenkins, N. A., Copeland, N. G., and Vande Woude, G. F., 1988, Genetic analysis and developmental regulation of testis-specific RNA expression of Mos, Abl, actin and Hox-1.4, Oncogene 2: 227–233.PubMedGoogle Scholar
  67. Sakai, I., Sharief, F. S., and Li, S. S.-L., 1987, Molecular cloning and nucleotide sequence of the cDNA for sperm-specific lactate dehydrogenase-C from mouse, Biochem. J. 242: 619–622.PubMedGoogle Scholar
  68. Shackleford, G. M., and Varmus, H. E., 1987, Expression of the proto-oncogene int-1 is restricted to postmeiotic male germ cells and the neural tube of mid-gestational embryos, Cell 50: 89–95.PubMedCrossRefGoogle Scholar
  69. Shimomura, H., Dangott, L. J., and Garbers, D. L., 1986, Covalent coupling of a resact analogue to guanylate cyclase, J. Biol. Chem. 261: 15778–15782.PubMedGoogle Scholar
  70. Singh, S., Lowe, D. G., Thorpe, D. S., Rodriguez, H., Kuang, W.-J., Dangott, L. J., Chinkers, M., Goeddel, D. V., and Garbers, L. D., 1988, Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases, Nature 334: 708–712.PubMedCrossRefGoogle Scholar
  71. Slaughter, G. R., Meistrich, M. L., and Means, A. R., 1989, Expression of RNAs for calmodulin, actins, and tubulins in rat testis cells, Biol. Reprod. 40: 395–405.PubMedCrossRefGoogle Scholar
  72. Storey, B. T., and Kayne, F. J., 1977, Energy metabolism of spermatozoa. VI. Direct intramitochondrial lactate oxidation by rabbit sperm mitochondria, Biol. Reprod. 16: 549–556.PubMedGoogle Scholar
  73. Taira, M., Iizasa, T., Yamada, K., Shimada, H., and Tatibana, M., 1989, Tissue-differential expression of two distinct genes for phosphoribosyl pyrophosphate synthetase and existence of the testis-specific transcript, Biochim. Biophys. Acta 1007: 203–208.PubMedCrossRefGoogle Scholar
  74. Urch, U. A., 1986, The action of acrosin on the zona pellucida, in: The Molecular and Cellular Biology of Fertilization, Vol. 207 ( J. L. Hedrick, ed.), Plenum Press, New York, pp. 113–132.CrossRefGoogle Scholar
  75. Vacquier, V. D., 1980, The adhesion of sperm to sea urchin eggs, in: The Cell Surface, Mediator of Developmental Processes ( N. K. Wessells, ed.), Academic Press, New York, pp. 151–168.Google Scholar
  76. VandeBerg, J. L., Lee, C.-Y., and Goldberg, E., 1981, Immunohistochemical localization of phosphoglycerate kinase isozymes in mouse testes, J. Exp. Zool. 217: 435–441.PubMedCrossRefGoogle Scholar
  77. Virbasius, J. V, and Scarpulla, R. C., 1988, Structure and expression of rodent genes encoding the testis-specific cytochrome c, J. Biol. Chem. 263: 6791–6796.PubMedGoogle Scholar
  78. Vitelli, L., Kemler, I., Lauber, B., Birnstiel, M., and Busslinger, M., 1988, Developmental regulation of micro-injected histone genes in sea urchin embryos, Dev. Biol. 127: 54–63.PubMedCrossRefGoogle Scholar
  79. Ward, S., Burke, D. J., Sulston, J. E., Coulson, A. R., Albertson, D. G., Ammons, D., Klass, M., and Hogan, E., 1988, Genomic organization of major sperm protein genes and pseudogenes in the nematode Caenorhabditis elegans, J. Mol. Biol. 199: 1–13.PubMedCrossRefGoogle Scholar
  80. Wheat, T. E., and Goldberg, E., 1983, Sperm-specific lactate dehydrogenase C4: Antigenic structure and immunosuppression of fertility, in: Isozymes: Current Topics in Biological and Medical Research, Vol. 7 ( M. C. Rattazzi, J. G. Scandalios, and G. S. Whitt, eds.), Alan R. Liss, New York, pp. 113–130.Google Scholar
  81. Wieben, E. D., 1981, Regulation of the synthesis of lactate dehydrogenase-X during spermatogenesis in the mouse, J. Cell. Biol. 88: 492–498.PubMedCrossRefGoogle Scholar
  82. Wolgemuth, D. J., Engelmyer, E., Duggal, R. N., Gizang-Ginsberg, E., Mutter, G. L., Ponzetto, C., Viviano, C., and Zakeri, Z. F., 1986, Isolation of a mouse cDNA coding for a developmentally regulated, testis-specific transcript containing homeo box homology, EMBO J. 5: 1229–1235.PubMedGoogle Scholar
  83. Wright, R. M., John E., Klotz, K., Flickinger, C. J., and Herr, J. C., 1990, Cloning and sequencing of cDNAs coding for the human intra-acrosomal antigen SP-10, Biol. Reprod. 42: 693–701.PubMedCrossRefGoogle Scholar
  84. Zakeri, Z. F., and Wolgemuth, D. J., 1987, Developmental-stage-specific expression of the hsp70 gene family during differentiation of the mammalian male germ line, Mol. Cell. Biol. 7: 1791–1796.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Erwin Goldberg
    • 1
  1. 1.Department of Biochemistry, Molecular Biology, and Cell BiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations