Advertisement

Fertilization in the Rhesus Monkey

  • Barry D. Bavister
  • Dorothy E. Boatman
  • Patricia M. Morgan
  • Pradeep K. Warikoo

Abstract

The nonhuman primates occupy a unique niche among species suitable for experimental studies on fertilization and early development. Studies with nonhuman primates provide an important link between the huge literature derived from work on rodents and other common laboratory species and the relatively small amount of data on humans. Research with rodent species continues to provide the bulk of basic information on early development, in large part because of the ready availability of oocytes and embryos, but it is difficult to know to what extent information can be extrapolated to primate species, including humans. Information is increasingly available from the numerous human in vitro fertilization (IVF) programs now in operation. However, the amount and quality of basic scientific data on early development that can be obtained from this source are restricted, in part by ethical constraints (Austin, 1990) and in part by conflicting priorities between research and clinical needs for the supply of oocytes and embryos. For example, most “excess” human IVF embryos in the U.S.A. are destined for cryopreservation or for use in a donor program and are thus unsuitable for any research protocol that might compromise their viability. In contrast, there are no prohibitions on the use of fertilized eggs or embryos of nonhuman primates for research, while the reproductive physiology and embryology of the Old-World nonhuman primates are sufficiently similar to humans that direct extrapolation of concepts is possible.

Keywords

Rhesus Monkey Embryo Transfer Nonhuman Primate Oocyte Maturation Acrosome Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, F D., 1973, Spontaneous fetal death in man, Soc. Biol. 20: 375–403.PubMedGoogle Scholar
  2. Austin, C. R., 1951, Observations on the penetration of the sperm into the mammalian egg, Aust. J. Sci. Res. 4: 581–596.Google Scholar
  3. Austin, C R., 1990, Dilemmas in human IVF practice, in: Fertilization in Mammals ( B. D. Bavister, J. M. Cummins, and E. R. S. Roldan, eds.), Serono Symposia U.S.A., Norwell, Massachusetts, pp. 373–379.Google Scholar
  4. Balmaceda, J. P, Pool, T. B., Arana, J. B., Heitman, T. S., and Asch, R. H., 1984, Successful in vitro fertilization and embryo transfer in cynomolgus monkeys, Fertil. Steril. 42: 791–795.PubMedGoogle Scholar
  5. Balmaceda, J. P., Heitman, T. O., Garcia, M. R., Pauerstein, C. J., and Pool, T. B., 1986, Embryo cryopreservation in cynomolgus monkeys, Fertil. Steril. 45: 403–406.PubMedGoogle Scholar
  6. Balmaceda, J. P, Gastaldi, C., Ord, T, Borrero, C., and Asch, R. H., 1988, ‘Ihbal embryo transfer in cynomolgus monkeys: Effects of hyperstimulation and synchrony, Hum. Reprod. 3: 441–443.Google Scholar
  7. Bavister, B. D., 1982, Evidence for a role of post-ovulatory cumulus components in supporting fertilizing ability of hamster spermatozoa, J. Androl. 3: 365–372.Google Scholar
  8. Bavister, B. D., 1986, Animal in vitro fertilization and embryo development, in: Manipulation of Mammalian Development, Vol. 4, Developmental Biology: A Comprehensive Synthesis ( R. B. L. Gwatkin, ed.), Plenum Press, New York, pp. 81–148.CrossRefGoogle Scholar
  9. Bavister, B. D., 1987, Oocyte maturation and in vitro fertilization in the rhesus monkey, in: The Primate Ovary: Proceedings of the Serono Symposium ( R. L. Stouffer, ed.), Plenum Press, New York, pp. 119–138.CrossRefGoogle Scholar
  10. Bavister, B. D., 1988, A mini-chamber device for maintaining a constant carbon dioxide in air atmosphere during prolonged culture of cells on the stage of an inverted microscope, In Vitro Cell Dew. Biol. 24: 759–763.CrossRefGoogle Scholar
  11. Bavister, B. D., 1989, A consistently successful procedure for in vitro fertilization of golden hamster eggs, Gamete Res., 23: 139–158.PubMedCrossRefGoogle Scholar
  12. Bavister, B. D., 1990, Tests of sperm fertilizing ability, in: Gamete Physiology ( R. H. Asch, J. P. Balmaceda, and I. Johnston, eds.), Serono Symposia U.S.A., Norwell, Massachusetts, pp. 77–105.Google Scholar
  13. Bavister, B. D., and Yanagimachi, R., 1977, The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro, Biol. Reprod. 16: 228–237.PubMedCrossRefGoogle Scholar
  14. Bavister, B. D., Boatman, D. E., Leibfried, M. L., Loose, M., and Vernon, M. W, 1983a, Fertilization and cleavage of rhesus monkey oocytes in vitro, Biol. Reprod. 28: 983–999.PubMedCrossRefGoogle Scholar
  15. Bavister, B. D., Leibfried, M. L., and Lieberman, G., 1983b, Development of preimplantation embryos of the golden hamster in a defined culture medium, Biol. Reprod. 28: 235–247.PubMedCrossRefGoogle Scholar
  16. Bavister, B. D., Boatman, D. E., Collins, K., Dierschke, D. J., and Eisele, S. G., 1984, Birth of rhesus monkey infant following in vitro fertilization and non-surgical embryo transfer, Proc. Natl. Acad. Sci. U.S.A. 81: 2218–2222.PubMedCrossRefGoogle Scholar
  17. Bavister, B. D., Dees, H. C., and Schultz, R. D., 1986, Refractoriness of rhesus monkeys to repeated gonadotropin stimulation is due to formation of nonprecipitating antibodies, Am. J. Reprod. Immunol. Microbiol. 11: 11–16.PubMedGoogle Scholar
  18. Binor, Z., Rawlins, R. G., der Ven, H. V., and Dmowski, W. P., 1988, Rhesus monkey sperm penetration into zona-free hamster ova: Comparison of preparation and culture conditions, Gamete Res. 19: 91–100.PubMedCrossRefGoogle Scholar
  19. Blandau, R. J., and Young, W. C., 1939, The effects of delayed fertilization on the development of the guinea pig ovum, Am. J. Anat. 64: 303–329.CrossRefGoogle Scholar
  20. Boatman, D. E., 1987, In vitro growth of non-human primate pre-and periimplantation embryos, in: The Mammalian Preimplantation Embryo: Regulation of Growth and Differentiation (B. D. Bavister, ed.), Plenum Press, New York, pp. 273–308.CrossRefGoogle Scholar
  21. Boatman, D. E., 1990, Oviductal modulators of sperm fertilizing ability, in: Fertilization in Mammals ( B. D. Bavister, J. M. Cummins, and E. R. S. Roldan, eds.), Serono Symposia U.S.A., Norwell, Massachusetts, pp. 223–238.Google Scholar
  22. Boatman, D. E., and Bavister, B. D., 1984, Stimulation of rhesus monkey sperm capacitation by cyclic nucleotide mediators, J. Reprod. Fertil. 71: 357–366.PubMedCrossRefGoogle Scholar
  23. Boatman, D. E., Morgan, P. M., and Bavister, B. D., 1986, Variables affecting the yield and developmental potential of embryos following superstimulation and in vitro fertilization in rhesus monkeys, Gamete Res. 13: 327–338.CrossRefGoogle Scholar
  24. Chakraborty, J., 1981, Fine structural abnormalities in the developing mouse embryo, Gamete Res. 4: 535–545.CrossRefGoogle Scholar
  25. Chang, M. C., 1951, Fertilizing capacity of spermatozoa deposited into the fallopian tubes, Nature 168: 697–698.PubMedCrossRefGoogle Scholar
  26. Cline, E. M., Gould, K. G., and Foley, C. W., 1972, Regulation of ovulation, recovery of mature ova and fertilization in vitro of mature ova of the squirrel monkey (Saimiri sciureus), Fed. Proc. 31: 360.Google Scholar
  27. Cranfield, M. R., Schaffer, N., Bavister, B. D., Berger N., Boatman, D. E., Kempske, S., Miner, N., Panos, M., Adams, J., and Morgan, P. M., 1989, Assessment of oocytes retrieved from stimulated and unstimulated ovaries of pig-tailed macaques (Macaca nemestrina) as a model to enhance the genetic diversity of captive lion-tailed macaques (Macaca silenus), Zoo Biol. [Suppl.] 1: 33–46.CrossRefGoogle Scholar
  28. Cross, N. L., Morales, P., Overstreet, J. W., and Hanson, F. W., 1988, Induction of acrosome reactions by the human zona pellucida, Biol. Reprod. 38: 235–244.PubMedCrossRefGoogle Scholar
  29. Czaja, J. A., Robinson, J. A., Eisele, S. G., Scheffler, G., and Goy, R. W., 1977, Relationship between sexual skin colour of female rhesus monkeys and midcycle plasma levels of oestradiol and progesterone, J. Reprod. Fertil. 49: 147–150.PubMedCrossRefGoogle Scholar
  30. Downs, S. M., Coleman, D. L., Ward-Bailey, P F. and Eppig, J. J., 1985, Hypoxanthine is the principal inhibitor of murine oocyte maturation in a low molecular weight fraction of porcine follicular fluid, Proc. Natl. Acad. Sci. U.S.A. 82: 454–458.PubMedCrossRefGoogle Scholar
  31. Edwards, R. G., 1980, Conception in the Human Female, Academic Press, London, pp. 631–634.Google Scholar
  32. Enders, A. C., Hendrickx, A. G., and Binkerd, P E., 1982, Abnormal development of blastocysts and blastomeres in the rhesus monkey, Biol. Reprod. 26: 353–366.PubMedCrossRefGoogle Scholar
  33. Enders, A. C., Schlalke, S., Boatman, D. E., Morgan, P. M., and Bavister, B. D., 1989, Differentiation of blastocysts derived from in vitro fertilized rhesus monkey oocytes, Biol. Reprod. 41: 715–727.PubMedCrossRefGoogle Scholar
  34. Eppig, J.. J., and Downs, S. M., 1987, The effect of hypoxanthine on mouse oocyte growth and development in vitro: Maintenance of meiotic arrest and gonadotropin-induced oocyte maturation, Dev. Biol. 119: 313–321.PubMedCrossRefGoogle Scholar
  35. Eppig, J. J., and Schroeder, A. C., 1986, Culture systems for mammalian oocyte development: Progress and prospects, Theriogenology 25: 97–106.CrossRefGoogle Scholar
  36. Fishel, S. B., Edwards, R. G., and Evans, C. J., 1984, HCG secreted by preimplantation embryos cultured in vitro [human], Science 223: 816–818.PubMedCrossRefGoogle Scholar
  37. Fleming, A. D., Evans, G., Walton, E. A., and Armstrong, D. T., 1985, Developmental capability of rat oocytes matured in vitro in defined medium, Gamete Res. 12: 255–263.CrossRefGoogle Scholar
  38. Goodeaux, L. L., Voelkel, S. A., Anzalone, C. A., Menezo, Y., and Graves, K. H., 1989, The effect of rhesus uterine epithelial cell monolayers on in vitro growth of rhesus embryos, Theriogenology 31: 197.CrossRefGoogle Scholar
  39. Gould, K. G., Cline, E. M., and Williams, W. L., 1973, Observations on the induction of ovulation and fertilization in vitro in the squirrel monkey (Saimiri sciureus), Fertil. Steril. 24: 260–268.PubMedGoogle Scholar
  40. Guerrero. R., and Lanctot, C. A., 1970, Aging of fertilizing gametes and spontaneous abortion, Am. J. Obstet. Gynecol. 107: 263–267.Google Scholar
  41. Hardy, K., Hooper, M. A. K., Handyside, A. H., Rutherford, A. J., Winston, R. M. L., and Leese, H. J., 1989, Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos, Hum. Reprod. 4: 188–191.PubMedGoogle Scholar
  42. Hartman, C. G., and Corner, G. W., 1941, The first maturation division of the macaque ovum, Contrib. Embryol. 29: 1–6.Google Scholar
  43. Hegele-Hartung, C., Fisher, B., and Beier, H. M., 1988, Development of preimplantation rabbit embryos after invitro culture and embryo transfer: An electron microscopic study, Anat. Rec. 220: 31–42.PubMedCrossRefGoogle Scholar
  44. Hendrickx, A. G., and Binkerd, P E., 1980, Fetal deaths in nonhuman primates, in: Human Embryonic and Fetal Death ( I. H. Porter and E. B. Hook, eds.), Academic Press, New York, pp. 45–69.Google Scholar
  45. Hendrickx, A. G., and Kraemer D. C., 1968, Preimplantation stages of baboon embryos (Papio sp.), Anat. Rec. 162: 111–120.PubMedCrossRefGoogle Scholar
  46. Hertig, A. L., Rock, J., and Adams, E. C., 1956, A description of 34 human ova within the first 17 days of development, Am. J. Anat. 98: 435–493.PubMedCrossRefGoogle Scholar
  47. Heuser, C. H., and Streeter, G. L., 1941, Development of the macaque embryo, in: Embryology of the Rhesus Monkey (Macaca mulatta), Carnegie Institution, Washington, DC, pp. 17–65.Google Scholar
  48. Hsu, Y.-C., 1979, In vitro development of individually cultured whole mouse embryos from blastocyst to early somite stage, Dev. Biol. 68: 453–461.Google Scholar
  49. Hunter, R. H. F., 1980, Physiology and Technology of Reproduction in Female Domestic Animals, Academic Press, London, pp. 163–169.Google Scholar
  50. Hurst, P. R., Wheeler, A. G., and Eckstein, P, 1980, A study of uterine embryos recovered from rhesus monkeys fitted with intrauterine devices, Fertil. Steril. 33: 69–76.PubMedGoogle Scholar
  51. Hyne, R. V, and Garbers, D. L., 1979, Calcium-dependent increase in adenosine 3’,5’-monophosphate and induction of the acrosome reaction in guinea pig spermatozoa, Proc. Natl. Acad. Sci. U.S.A. 76: 5699–5703.PubMedCrossRefGoogle Scholar
  52. Juetten, J., and Bavister, B. D., 1983, Effects of egg aging on in vitro fertilization and first cleavage in the hamster, Gamete Res. 8: 219–230.CrossRefGoogle Scholar
  53. Kraemer, D. C., and Hendrickx, A. G., 1971, Descriptions of stages I, II and III, in: Embryology of the Baboon ( A. G. Hendrickx, ed.), University of Chicago Press, Chicago, pp. 45–52.Google Scholar
  54. Kreitman, O., Lynch, A., Nixon, W. E., and Hodgen, D. G., 1982, Ovum collection, induced luteal dysfunction, in vitro fertilization, embryo development and low tubal ovum transfer in primates, in: In Vitro Fertilization and Embryo Transfer ( E. S. E. Hafez and K. Semm, eds.), MTP Press, Lancaster, England, pp. 303–324.Google Scholar
  55. Kuehl, T. J., and Dukelow, W. R., 1979, Maturation and in vitro fertilization of follicular oocytes of the squirrel monkey (Saimiri sciureus), Biol. Reprod. 21: 545–556.PubMedCrossRefGoogle Scholar
  56. Kuzan, E. B., and Quinn, P, 1988, Cryopreservation of mammalian embryos, in: In Vitro Fertilization and Embryo Transfer: A Manual of Basic Techniques ( D. P. Wolf, B. D. Bavister, M. Gerrity, and G. S. Kopf, eds.), Plenum Press, New York, pp. 301–347.CrossRefGoogle Scholar
  57. Leese, H. J., Hooper, M. A. K., Edwards, R. G., and Ashwood-Smith, M. J., 1986, Uptake of pyruvate by early human embryos determined by a non-invasive technique, Hum. Reprod. 1: 181–182.PubMedGoogle Scholar
  58. Leibfried, M. L., and Bavister, B. D., 1982, Effects of epinephrine and hypotaurine on in vitro fertilization in the golden hamster, J. Reprod. Fertil. 66: 87–93.PubMedCrossRefGoogle Scholar
  59. Leibfried, M. L., and Bavister, B. D., 1983, Fertilizability of in vitro matured oocytes from golden hamsters, J. Exp. Zool. 226: 481–485.PubMedCrossRefGoogle Scholar
  60. Lewis, W. H., and Hartman, C. G., 1941, Tubal ova of the rhesus monkey, in: Embryology of the Rhesus Monkey (Macaca mulatta), Carnegie Institution, Washington DC, pp. 9–15.Google Scholar
  61. Mastroianni, L., and Manson, W. A., 1963, Collection of monkey semen by electroejaculation, Proc. Soc. Exp. Biol. Med. 112: 1025–1027.PubMedGoogle Scholar
  62. Matteri, R. L., Warikoo, P. K., and Bavister, B. D., 1991, Biochemical and biological properties of urinary follicle- stimulating hormone (FSH) from the rhesus monkey (Macaca mulatta), Am. J. Primatol. (in press).Google Scholar
  63. Meizel, S., lìirner, K. O., and Thomas, P., 1984, The stimulation of hamster sperm capacitation and acrosome reactions by biogenic amines, in: Catecholamines as Hormone Regulators ( N. Ben-Jonathon, J. M. Bahr, and R. I. Weiner, eds.), Raven Press, New York, pp. 329–343.Google Scholar
  64. Mohr, L. R., Trounson, A., and Freemann, L., 1985, Deep-freezing and transfer of human embryos, J. in Vitro Fertil. Embryo Transfer 2:1–10.Google Scholar
  65. Moor, R. M., and Cran, D. G., 1980, Intercellular coupling in mammalian oocytes, in: Development in Mammals, Vol. 4 ( M. H. Johnson, ed), Elsevier/North-Holland Biomedical Press, New York, pp. 3–37.Google Scholar
  66. Moreno, R., and Barros, C., 1990, Effect of test-yolk upon the induction of the acrosome reaction and on the ability of human spermatozoa to fuse with zona-free hamster oocytes, in: Fertilization in Mammals ( B. D. Bavister, J. M. Cummins, and E. R. S. Roldan, eds.), Serono Symposia U.S.A., Norwell, Massachusetts, p. 424.Google Scholar
  67. Morgan, P. M., Boatman, D. E., Collins, K., and Bavister, B. D., 1984, Complete preimplantation development in culture of in vitro fertilized rhesus monkey oocytes, Biol. Reprod. [Suppl.] 1: 96a.Google Scholar
  68. Morgan, P. M., Boatman, D. E., and Kraus, E. M., 1986, Relationship between follicular fluid steroid hormone concentrations and in vitro development of rhesus monkey embryos, Biol. Reprod. 34 (Suppl. 1): 94a.Google Scholar
  69. Morgan, P. M., Hutz, R. J., Kraus, E. M., Cormie, J. A., Dierschke, D. J., and Bavister, B. D., 1987a, Evaluation of ultrasonography for monitoring follicular growth in rhesus monkeys, Theriogenology 27: 769–781.PubMedCrossRefGoogle Scholar
  70. Morgan, P M., Warikoo, P. K., Erwin, M. J., and Kraus, E. M., 1987b, Recovery of oocytes from spontaneously cycling rhesus monkeys: Timing, follicular steroids and in vitro fertilization, Biol. Reprod. 36 (Suppl. 1): 130.CrossRefGoogle Scholar
  71. Morgan, P. M., Boatman, D. E., and Bavister, B. D., 1990, Relationships between follicular fluid steroid hormone concentrations, oocyte maturation, in vitro fertilization and embryo development in the rhesus monkey, Molec. Reprod. Dev. 27: 145–151.PubMedCrossRefGoogle Scholar
  72. Morgan, P. M., Warikoo, P. K., and Bavister, B. D., 1991, In vitro maturation of ovarian oocytes from unstimulated rhesus monkeys: assessment of cytoplasmic maturity by embryonic development after in vitro fertilization, Biol. Reprod. 45: 89–93.Google Scholar
  73. Naish, S. J., Perreault, S. D., and Zirkin, B. R., 1988, DNA synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes, Gamete Res. 18: 109–120.CrossRefGoogle Scholar
  74. Polan, M. L., Totora, M., Caldwell, B. V, DeCherney, A. H., Haseltine, F. P, and Kase, N., 1982, Abnormal ovarian cycles as diagnosed by ultrasound and serum estradiol levels, Fertil. Steril. 37: 342–347.PubMedGoogle Scholar
  75. Pope, V. Z., Pope, C. E., and Beck, L. R., 1982a, Gonadotropin production by baboon embryos in vitro, in: In Vitro Fertilization and Embryo Transfer ( E. S. E. Hafez and K. Semm, eds.), MTP Press, Lancaster, England, pp. 129–134.Google Scholar
  76. Pope, C. E., Pope, V. Z., and Beck, L. R., 19826, Development of baboon preimplantation embryos to post-implantation stages in vitro, Biol. Reprod. 27: 915–923.Google Scholar
  77. Pope, C. E., Pope, V. Z., and Beck, L. R., 1986, Cryopreservation and transfer of baboon embryos, J. in Vitro Fertil. Embryo Transfer 3:33–39.Google Scholar
  78. Renaud, R. L, Macler, J., Dervain, I., Ehret, M. C., Aron, C., Plas-Roser S., Spira, A., and Pollack, H., 1980, Echographic study of follicular maturation and ovulation during the normal menstrual cycle, Fertil. Steril. 33: 272–276.PubMedGoogle Scholar
  79. Rogers, B. J., 1978, Mammalian sperm capacitation and fertilization in vitro: A critique of methodology, Gamete Res. 1: 165–223.CrossRefGoogle Scholar
  80. Sathananthan, A. H., and Trounson, A. 0., 1982, Ultrastructure of cortical granule release and zona interaction in monospermic and polyspermic human ova fertilized in vitro, Gamete Res. 6: 225–234.CrossRefGoogle Scholar
  81. Schroeder, A. C., and Eppig, J. J., 1984, The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal, Dev. Biol. 102: 493–497.PubMedCrossRefGoogle Scholar
  82. Schroeder, A. C., and Eppig, J. J., 1989, Developmental capacity of mouse oocytes that undergo maturation in vitro: Effect of the hormonal state of the oocyte donor, Gamete Res. 24: 81–92.PubMedCrossRefGoogle Scholar
  83. Schultz, R. M., 1985, Roles of cell-to-cell communication in development, Biol. Reprod. 32: 27–42.PubMedCrossRefGoogle Scholar
  84. Shalgi, R., 1984, Developmental capacity of rat embryos produced by in vivo or in vitro fertilization, Gamete Res. 10: 77–82.CrossRefGoogle Scholar
  85. Simon, J. A., and Hodgen, G. D., 1989, Macaque embryos produce stage specific angiogenic factors associated with viability, Biol. Reprod. 40 (Suppl 1): 63.Google Scholar
  86. Soupart, P., and Strong, P. A., 1974, Ultrastructural observations on human oocytes fertilized in vitro, Fertil. Steril. 25: 11–44.PubMedGoogle Scholar
  87. Staigmiller, R. B., and Moor, R. M., 1984, Effect of follicle cells on the maturation and developmental competence of ovine oocytes matured outside the follicle, Gamete Res. 9: 221–229.CrossRefGoogle Scholar
  88. Summers, P. M., Shephard, A. M., Taylor, C. T., and Hearn, J. P.,1987, The effects of cryopreservation and transfer on embryonic development in the common marmoset monkey, Callithrix jacchus, J. Reprod. Fertil. 79: 241–250.Google Scholar
  89. Tash, J. S.., and Means, A. R., 1983, Cyclic adenosine 3’,5’monophosphate, calcium and protein phosphorylation in flagellar motility, Biol. Reprod. 28: 75–104.PubMedCrossRefGoogle Scholar
  90. Thibault, C., 1977, Are follicular maturation and oocyte maturation independent processes? J. Reprod. Fertil. 51: 1–15.PubMedCrossRefGoogle Scholar
  91. Van Blerkom, J., Henry, G., and Porreco, R., 1984, Preimplantation human embryonic development from polypronuclear eggs after in vitro fertilization, Fertil. Steril. 41: 686–696.PubMedGoogle Scholar
  92. VanderVoort, C. A., Baughman, W. L., and Stouffer, R. L., 1989, Comparison of different regimens of human gonadotropins for superovulation of rhesus monkeys: Ovulatory response and subsequent luteal function, J. in Vitro Fertil. Embryo Transfer 6:85–91.Google Scholar
  93. Warikoo, P. K., 1990, Development of blastocysts following bisection of an in vitro fertilized rhesus monkey embryo, Biol. Reprod. 42 (Suppl 1): 54 (abstract no. 42).Google Scholar
  94. Warikoo, P. K., and Bavister, B. D., 1989, Hypoxanthine and cAMP maintain meiotic arrest of rhesus monkey oocytes in vitro, Fertil. Steril. 51: 886–889.PubMedGoogle Scholar
  95. Wassarman, P. M., and Bleil, J. D., 1982, The role of zona pellucida glycoproteins as regulators of sperm—egg interaction in the mouse, in: Cellular Recognition ( W. Fraser, L. Glaser, and D. Gottlieb, eds.), Alan R. Liss, New York, pp. 845–863.Google Scholar
  96. Wolf, D. P, VanderVoort, C. A., Meyer-Haas, G. R., Zelinski-Wooten, M. B., Hess, D. L., Baughman, W. L., and Stouffer, R. L., 1989, In vitro fertilization and embryo transfer in the rhesus monkey, Biol. Reprod. 41: 335–346.Google Scholar
  97. Yanagimachi, R., 1970, The movement of golden hamster spermatozoa before and after capacitation, J. Reprod. Fertil. 23: 193–196.PubMedCrossRefGoogle Scholar
  98. Yanagimachi, R., 1981, Mechanisms of fertilization in mammals, in: Fertilization and Embryonic Development In Vitro ( L. Mastroianni and J. D. Biggers, eds.), Plenum Press, New York, pp. 81–182.CrossRefGoogle Scholar
  99. Yanagimachi, R., 1984, Zona-free hamster eggs: Their use in assessing fertilizing capacity and examining chromosomes of human spermatozoa, Gamete Res. 10: 178–232.CrossRefGoogle Scholar
  100. Yanagimachi, R., Yanagimachi, H., and Rogers, B. J., 1976, The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa, Biol. Reprod. 15: 471–476.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Barry D. Bavister
    • 1
  • Dorothy E. Boatman
    • 1
  • Patricia M. Morgan
    • 1
  • Pradeep K. Warikoo
    • 1
  1. 1.Wisconsin Regional Primate Research CenterUniversity of WisconsinMadisonUSA

Personalised recommendations