Fertilization in the Golden Hamster

  • Gary N. Cherr
  • Erma Z. Drobnis


Early studies of fertilization in mammals involved observations of gametes that had been flushed from the reproductive tract of mated females. The development in the early 1960s of methods for the in vitro capacitation of sperm and the in vitro fertilization for the golden hamster (Mesocricetus auratus) eggs allowed investigators better control of the conditions of gamete interaction. It became possible to test hypotheses using well-controlled experiments in this species. Subsequently, hamsters were used extensively in studies of mammalian fertilization.


Zona Pellucida Acrosome Reaction Golden Hamster Female Reproductive Tract Cortical Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, K. K., 1984, Lectin-coated agarose beads in the investigation of sperm capacitation in the hamster, Dev. Biol. 104: 131–142.PubMedGoogle Scholar
  2. Ahuja, K. K., 1985, Carbohydrate determinants involved in mammalian fertilization, Am. J. Anat. 174: 207–224.PubMedGoogle Scholar
  3. Ahuja, K. K., and Bolwell, G. P., 1983, Probable asymmetry in the organization of components of the hamster zona pellucida, J. Reprod. Fertil. 69: 49–55.PubMedGoogle Scholar
  4. Austin, C. R., 1985, Sperm maturation in the male and female genital tracts, in: Biology of Fertilization, Vol. 2 ( C. B. Metz and A. Monroy, eds.), Academic Press, New York, pp. 121–155.Google Scholar
  5. Barros, C., and Yanagimachi, R., 1972, Polyspermy preventing mechanisms in the golden hamster egg, J. Exp. Zool. 180: 251–266.PubMedGoogle Scholar
  6. Battalia, D. B., and Yanagimachi, R., 1979, Enhanced and co-ordinated movement of the hamster oviduct during the periovulatory period, J. Reprod. Fertil. 56: 515–520.PubMedGoogle Scholar
  7. Bavister, B., 1986, Animal in vitro fertilization and embryo development, in: Manipulation of Mammalian Development ( R. B. L. Gwatkin, ed.), Plenum Press, New York, pp. 81–148.Google Scholar
  8. Bavister, B. D., 1989, A consistently successful procedure for in vitro fertilization of golden hamster eggs, Gamete Res. 23: 139–158.PubMedGoogle Scholar
  9. Bedford, J. M., 1970a, Sperm capacitation and fertilization in mammals, Biol. Reprod. 2: 128–158.PubMedGoogle Scholar
  10. Bedford, J. M., 1970b, The saga of mammalian sperm from ejaculation to syngamy, in: Mammalian Reproduction ( H. Gibian and E. J. Plotz, eds.), Springer Verlag, New York, pp. 124–182.Google Scholar
  11. Bedford, J. M., 1983, Significance of the need for sperm capacitation before fertilization in eutherian mammals, Biol. Reprod. 28: 108–120.PubMedGoogle Scholar
  12. Bishop, D. W, 1969, Sperm physiology in relation to the oviduct, in: The Mammalian Oviduct ( E. S. E. Hafez and R. J. Blandau, eds.), University of Chicago Press, Chicago, pp. 231–250.Google Scholar
  13. Blandau, R. J., 1969, Gamete transport—comparative aspects, in: Mammalian Oviduct ( E. S. E. Hafez and R. J. Blandau, eds.), University of Chicago Press, Chicago, pp. 129–162.Google Scholar
  14. Blandau, R J., 1973, Gamete transport in the female mammal, in: Handbook of Physiology, Section 7, Endocrinology II ( R. O. Greep and E. B. Astwood, eds.), American Physiological Society, Washington, DC, pp. 153–163.Google Scholar
  15. Bleau, G., and St. Jacques, S., 1989, Transfer of oviductal proteins to the zona pellucida, in: The Mammalian Egg Coat Structure and Function (J. Dietl, eds.), Springer-Verlag, Berlin, pp. 99–110.Google Scholar
  16. Boatman, D. E., Andrews, J. C., and Bavister, B. D., 1988, A quantitative assay for capacitation: Evaluation of multiple sperm penetration through the zona pellucida of salt-stored hamster eggs, Gamete Res. 19: 19–29.PubMedGoogle Scholar
  17. Boyer, C. C., 1953, Chronology of development for the golden hamster, J. Morphol. 92: 1–38.Google Scholar
  18. Cherr, G. N., and Ducibella, T., 1990, Activation of the mammalian egg: Cortical granule distribution, exocytosis, and the block to polyspermy, in: Fertilization in Mammals ( B. D. Bavister, J. Cummins, and E. R. S. Roldan, eds.), Serono Symposia, Norwell, Massachusetts, pp. 309–330.Google Scholar
  19. Cherr, G. N., Lambert, H., Meizel, S., and Katz, D. E, 1986, In vitro studies of the golden hamster sperm acrosome reaction: Completion on the zona pellucida and induction by homologous solubilized zonae pellucidae, Dev. Biol. 114: 119–131.Google Scholar
  20. Cherr, G. N., Drobnis, E. Z., and Katz, D. F., 1988, Localization of cortical granule constituents before and after exocytosis in the hamster egg, J. Exp. Zool. 246: 81–93.PubMedGoogle Scholar
  21. Cherr, G. N., Yudin, A. I., and Katz, D. F., 1990, Organization of the hamster cumulus extracellular matrix: A hyaluronate—glycoprotein gel which modulates sperm access to the oocyte, Dev. Growth Differ. 32: 353–365.Google Scholar
  22. Corselli, J., and Talbot, P., 1986, An in vitro technique to study penetration of hamster oocyte—cumulus complexes by using physiological numbers of sperm, Gamete Res. 13: 293–308.Google Scholar
  23. Cran, D. G., Moor, R. M., and Irvine, R. F.,1988, Initiation of the cortical reaction in hamster and sheep oocytes in response to inositol trisphosphate, J. Cell Sci. 91: 139–144.Google Scholar
  24. Cummins, J. M., and Yanagimachi, R., 1982, Sperm—egg ratios and the site of the acrosome reaction during in vivo fertilization in the hamster, Gamete Res. 5: 239–256.Google Scholar
  25. Cummins, J. M., and Yanagimachi, R., 1986, Development of ability to penetrate the cumulus oophorus by hamster spermatozoa capacitated in vitro, in relation to the timing of the acrosome reaction, Gamete Res. 15: 187–212.Google Scholar
  26. Dow, M. P. D., and Bavister, B. D., 1989, Direct contact is required between serum albumin and hamster spermatozoa for capacitation in vitro, Gamete Res. 23: 171–180.PubMedGoogle Scholar
  27. Dravland, J. E., Llanus, M. N., Munn, R. J., and Meizel, S., 1984, Evidence for the involvement of a sperm trypsinlike enzyme in the membrane events of the hamster acrosome reaction, J. Exp. Zool. 232: 117–128.PubMedGoogle Scholar
  28. Drobnis, E. Z., and Katz, D. F.,1990, Videomicroscopy of mammalian fertilization, in: The Biology and Chemistry of Mammalian Fertilization (P. M. Wassarman, ed.), CRC Press, New York, pp. 269–300.Google Scholar
  29. Drobnis, E. Z., Andrew, J. B., and Katz, D. F., 1988a, Biophysical properties of the zona pellucida measured by capillary suction: Is zona hardening a mechanical phenomenon?, J. Exp. Zool. 245: 206–219.PubMedGoogle Scholar
  30. Drobnis, E. Z., Yudin, A. I., Cherr, G. N., and Katz, D. F, 1988b, Hamster sperm penetration of the zona pellucida: Kinematic analysis and mechanical implications, Dev. Biol. 130: 311–323.PubMedGoogle Scholar
  31. Drobnis, E. Z., Yudin, A. I., Cherr, G. N., and Katz, D. F., 1988c, Kinematics of hamster sperm during penetration of the cumulus cell matrix, Gamete Res. 21: 367–383.PubMedGoogle Scholar
  32. Fraser, L. R., and Abuja, K. K., 1988, Metabolic surface events in fertilization, Gamete Res. 20: 491–519.PubMedGoogle Scholar
  33. Freund, M., 1973, Mechanisms and problems of sperm transport, in: The Regulation of Mammalian Reproduction ( S. J. Segal, R. Crozier, P. A. Corfman, and P. G. Condliff, eds.), Charles C. Thomas, Springfield, IL, pp. 352–361.Google Scholar
  34. Fukuda, Y., and Chang, M. C., 1978, The time of cortical granule breakdown and sperm penetration in mouse and hamster eggs inseminated in vitro, Biol. Reprod. 19: 261–266.PubMedGoogle Scholar
  35. Gibbons, I. R., 1981, Cilia and flagella of eukaryotes, J. Cell Biol. 91: 107–124.Google Scholar
  36. Green, D. P. L., 1988, Sperm thrusts and the problem of penetration, Biol. Rev. 63: 79–105.PubMedGoogle Scholar
  37. Gulyas, B. J., and Schmell, E. D., 1981, Sperm—egg recognition and binding in mammals, in: Bioregulators of Reproduction ( G. Jagiello, and H. Vogel, eds.), Academic Press, New York, pp. 499–519.Google Scholar
  38. Gwatkin, R. B. L., 1977, Fertilization Mechanisms in Man and Mammals, Plenum Press, New York.Google Scholar
  39. Gwatkin, R. B. L., 1989, Zona binding sites of the spermatozoon, in: The Mammalian Egg Coat, Structure and Function ( J. Dietl, ed.), Springer-Verlag, Berlin, pp. 61–74.Google Scholar
  40. Gwatkin, R. B. L., and Anderson, O. E, 1969, Capacitation of hamster spermatozoa by bovine follicular fluid, Nature 224: 1111–1112.PubMedGoogle Scholar
  41. Gwatkin, R. B. L., and Williams, D. T., 1977, Receptor activity of the hamster and mouse solubilized zona pellucida before and after the zona reaction, J. Reprod. Fertill. 49: 55–59.Google Scholar
  42. Hamner, C. E., 1972, Physiology of sperm in the female reproductive tract, in: Biology of Mammalian Fertilization and Implantation ( K. S. Moghissi, and E. S. E. Halez, eds.), Charles C. Thomas, Springfield, IL, pp. 203–212.Google Scholar
  43. Harper, M. J. K., 1982, Sperm and egg transport, in: Reproduction in Mammals, 2nd ed., Vol. 1 ( C. R. Austin and R. V. Short, eds.), Cambridge University Press, Cambridge, pp. 102–127.Google Scholar
  44. Hartmann, J. F.,1983, Mammalian fertilization: Gamete surface interactions in vitro, in: Mechanism and Control of Animal Fertilization (J. F. Hartmann, ed.), Academic Press, New York, pp. 325–364.Google Scholar
  45. Hartmann, J. F., and Gwatkin, R. B. L., 1971, Alteration of sites on the mammalian sperm surface following capacitation, Nature 234: 479–481.PubMedGoogle Scholar
  46. Hartmann, J. F., Gwatkin, R. B. L., and Hutchison, C. E, 1972, Early contact interactions between mammalian gametes in vitro: Evidence that the vitellus influences adherence between sperm and the zona pellucida, Proc. Natl. Acad. Sci. U.S.A. 69: 2767–2769.PubMedGoogle Scholar
  47. Hawk, H. W, 1987, Transport and fate of spermatozoa after insemination of cattle, J. Dairy Sci. 70: 1487–1503.PubMedGoogle Scholar
  48. Hirao, Y., and Yanagimachi, R., 1978, Effects of various enzymes on the ability of hamster egg plasma kmembrane to fuse with spermatozoa, Gamete Res. 1: 3–12.Google Scholar
  49. Hunter, R. H. E, 1975, Transport, migration and survival of spermatozoa in the female genital tract: Species with intra-uterine deposition of semen, in: The Biology of Spermatozoa ( E. S. E. Hafez and C. G. Thibault, eds.), S. Karger, Basel, pp. 145–155.Google Scholar
  50. Hunter, R. H. E, 1980, Transport and storage of spermatozoa in the female tract, in: Proceedings 9th International Congress on Animal Reproduction, Vol. 2, Padilla Publishing, Madrid, Spain, pp. 227–233.Google Scholar
  51. Hunter, R H. F., 1987, Human fertilization in vivo, with special reference to progression, storage and release of competent spermatozoa, Hum. Reprod. 2: 329–332.PubMedGoogle Scholar
  52. Ishijima, S., and Mohri, H., 1985, A quantitative description of flagellar movement in golden hamster spermatozoa, J. Exp. Biol. 114: 463–475.PubMedGoogle Scholar
  53. Kan, E W K., St. Jacques, S., and Bleau, G., 1988, Immunoelectron microscopic localization of an oviductal antigen in hamster zona pellucida by use of a monoclonal antibody, J. Histochem. Cytochem. 36: 1441–1447.Google Scholar
  54. Katz, D. E, and Drobnis, E. Z., 1990, The forces generated by mammalian sperm, in: Proceedings of the Serono Symposium on Fertilization in Mammals ( B. D. Bavister, J. Cummins, and E. R. S. Roldan, eds.), Serono Symposia, Norwell, Massachusetts, pp. 125–137.Google Scholar
  55. Katz, D. F., and Yanagimachi, R., 1980, Movement characteristics of hamster spermatozoa within the oviduct, Biol. Reprod. 22: 759–764.PubMedGoogle Scholar
  56. Katz, D. E, Yanagimachi, R., and Dresdner, R. D., 1978, Movement characteristics and power output of guinea-pig and hamster spermatozoa in relation to activation, J. Reprod. Fertil. 52: 167–172.PubMedGoogle Scholar
  57. Katz, D. E, Cherr, G. N., and Lambert, H., 1986, The evolution of hamster sperm motility during capacitation and interaction with the ovum vestments in vitro, Gamete Res. 14: 333–346.Google Scholar
  58. Katz, D. F, Drobnis, E. Z., Baltz, J., Cherr, G. N., Yudin, A. I., Cone, R. A., and Cheng, L. Y., 1987, The biophysics of sperm penetration of the cumulus and zona pellucida, in: New Horizons in Sperm Cell Research (H. Mohri, ed.), Japan Scientific Societies Press, Tokyo, pp. 275–285.Google Scholar
  59. Katz, D. E, Drobnis, E. Z., and Overstreet, J. W, 1989, Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments, Gamete Res. 22: 443–469.PubMedGoogle Scholar
  60. Martin, G. G., and Talbot, P, 1981a, The role of follicular smooth muscle cells in hamster ovulation. J. Exp. Zool. 216: 469–482.PubMedGoogle Scholar
  61. Martin, G. G., and Talbot, P., 1981b, Drugs that block smooth muscle contraction inhibit in vivo ovulation in hamsters, J. Exp. Zool. 216: 483–491.PubMedGoogle Scholar
  62. Meizel, S., 1978, The mammalian sperm acrosome reaction. A biochemical approach, in: Development in Mammals (M. H. Johnson, ed.), North Holland, New York, pp. 1–64.Google Scholar
  63. Meizel, S., 1984, The importance of hydrolytic enzymes to an exocytotic event, the mammalian sperm acrosome reaction, Biol. Rev. 59: 125–157.PubMedGoogle Scholar
  64. Meizel, S., 1985, Molecules that initiate or help stimulate the acrosome reaction by their interaction with the mammalian sperm surface, Am. J. Anat. 174: 285–302.PubMedGoogle Scholar
  65. Meizel, S., Lui, C. W, Working, P K., and Mrsny, R. J., 1980, Taurine and hypotaurine: Their effects on motility, capacitation and the acrosome reaction of hamster sperm in vitro and their presence in sperm and reproductive tract fluids of several mammals, Dev. Growth Diff. 22: 483–494.Google Scholar
  66. Miyazaki, S, 1988, Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs, J. Cell Biol. 106: 345–353.PubMedGoogle Scholar
  67. Miyazaki, S., 1989, Signal transduction of sperm—egg interaction causing periodic calcium transients in hamster eggs, in: Mechanisms of Lgg Activation ( R. Nuccitelli, G. N. Cherr, and W. H. Clark, Jr., eds.), Plenum Press, New York, pp. 231–246.Google Scholar
  68. Miyazaki, S., and Igusa, Y., 1981, Fertilization potential in golden hamster eggs consists of recurring hyperpolarizations, Nature 290: 702–704.PubMedGoogle Scholar
  69. Miyazaki, S., and Igusa, Y., 1982, Ca-mediated activation of a K current at fertilization of golden hamster eggs, Proc. Natl. Acad. Sci. U.S.A. 79: 931–935.PubMedGoogle Scholar
  70. Mohri, H., and Yano, Y., 1980, Analysis of mechanism of flagellar movement with golden hamster spermatozoa, Biomed. Res. 1: 552–555.Google Scholar
  71. Moller, C. C., Bleil, J. D., Kinloch, R. A., and Wassarman, P M., 1990, Structural and functional relationships between mouse and hamster zona pellucida glycoproteins, Dev. Biol. 137: 276–286.PubMedGoogle Scholar
  72. Moore, H. D. M., and Bedford, J. M., 1983, The interaction of mammalian gametes in the female, in: Mechanism and Control of Animal Fertilization ( J. R. Hartmann, ed.), Academic Press, New York, pp. 453–497.Google Scholar
  73. Mortimer, D., 1983, Sperm transport in the human female reproductive tract, Oxford Rev. Reprod. Biol. 5: 30–61.Google Scholar
  74. Morton, B., and Albagli, L., 1973, Modification of hamster sperm adenylcyclase by capacitation in vitro, Biochem. Biophys. Res.Commun. 50: 695–703.Google Scholar
  75. Mrsny, R. J., and Meizel, S., 1980, Evidence suggesting a role for cyclic nucleotides in acrosome reactions of hamster sperm in vitro, J. Exp. Zool. 211: 153–158.PubMedGoogle Scholar
  76. Mrsny, R. J., Siiteri, J. E., and Meizel, S., 1984, Hamster sperm Na+, K+ -adenosine triphosphatase: Increased activity during capacitation in vitro and its relationship to cyclic nucleotides, Biol. Reprod. 30: 573–584.PubMedGoogle Scholar
  77. Murdoch, W. J., and Cavender, J. L., 1987, Mechanisms of ovulation. Adv. Contracept. Deliv. Sys. 3 (4): 353–366.Google Scholar
  78. Nicolson, G. L., Yanagimachi, R., and Yanagimachi, H., 1975, Ultrastructural localization of lectin-binding sites on the zonae pellucidae and plasma membranes of mammalian eggs, J. Cell Biol. 66: 263–274.PubMedGoogle Scholar
  79. Oikawa, T., Yanagimachi, R., and Nicolson, G. L., 1973, Wheat germ agglutinin blocks mammalian fertilization, Nature 241: 256–259.PubMedGoogle Scholar
  80. Oikawa, T., Nicolson, G. L., and Yanagimachi, R., 1974, Inhibition of hamster fertilization by phytoagglutinins, Exp. Cell Res. 83: 239–246.PubMedGoogle Scholar
  81. Oikawa, T., Sendai, Y., Kurata, S., and Yanagimachi, R., 1988, Glycoprotein of oviductal origin alters biochemical properties of the zona pellucida of hamster egg, Gamete Res. 19: 113–122.PubMedGoogle Scholar
  82. Orsini, M. W., 1961, The external vaginal phenomena characterizing the stages of the estrous cycle, pregnancy, pseudopregnancy, lactation, and the anestrous hamster, Mesocricetus auratus, Waterhouse Proc. Anim. Care Panel 11: 193–206.Google Scholar
  83. Overstreet, J. W., 1983, Transport of gametes in the reproductive tract of the female mammal, in: Mechanism and Control of Animal Fertilization (J. F. Hartmann, ed.), Academic Press, New York, pp. 499–543.Google Scholar
  84. Overstreet, J. W, and Katz, D. F., 1977, Sperm transport and selection in the female genital tract, in: Development in Mammals, Vol. 2, ( M. Johnson, ed.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 31–65.Google Scholar
  85. Overstreet, J. W, Cooper, G. W, and Katz, D. F., 1978, Sperm transport in the reproductive tract of the female rabbit. II. The sustained phase of transport, Biol. Reprod. 19: 115–132.PubMedGoogle Scholar
  86. Phillips, D. M., and Shalgi, R., 1980, Surface architecture of the mouse and hamster zona pellucida and oocyte, J. Ultrastruct. Res. 72: 1–12.PubMedGoogle Scholar
  87. Schini, S. A., and Bavister, B. D., 1988a, Development of golden hamster embryos through the “two-cell block” in chemically defined medium, J. Exp. Zool. 245: 111–115.PubMedGoogle Scholar
  88. Schini, S. A., and Bavister, B. D., 1988b, Two-cell block development of cultured hamster embryos is caused by phosphate and glucose, Biol. Reprod. 39: 1183–1192.PubMedGoogle Scholar
  89. Schmell, E. D., Gulyas, B. J., and Hedrick, J. L., 1983, Egg surface changes during fertilization and the molecular mechanism of the block to polyspermy, in: Mechanism and Control of Animal Fertilization ( J. F. Hartmann, ed.), Academic Press, New York, pp. 356–413.Google Scholar
  90. Schroeder, P. C., and Talbot, P., 1982, Intrafollicular pressure decreases during contraction of hamster follicular smooth muscle cells in vitro, J. Exp. Zool. 224: 417–426.PubMedGoogle Scholar
  91. Shalgi, R., and Phillips, D., 1980, Mechanics of sperm entry in cycling hamsters, J. Ultrastruct. Res. 71: 154–161.PubMedGoogle Scholar
  92. Smith, T. T., Koyanage, E, and Yanagimachi, R., 1987, Distribution and number of spermatozoa in the oviduct of the golden hamster after natural mating and artificial insemination, Biol. Reprod. 37: 225–234.PubMedGoogle Scholar
  93. Steinhardt, R. A. S., Epel, D., Carroll, E. J., and Yanagimachi, R., 1974, Is calcium ionophore a universal activator for unfertilized eggs? Nature 252: 41–43.PubMedGoogle Scholar
  94. Strauss, F., 1956, The time and place of fertilization of the golden hamster egg., J. Embryol. Exp. Morphol. 4: 42–56.Google Scholar
  95. Suarez, S. S., 1987, Sperm transport and motility in the mouse oviduct: Observations in situ, Biol. Reprod. 36: 203–210.PubMedGoogle Scholar
  96. Suarez, S. S., 1988, Hamster sperm motility transformations during epididymal maturation and the development of hyperaction, in vitro, Gamete Res. 19: 51–65.PubMedGoogle Scholar
  97. Suarez, S. S., Katz, D. F., and Meizel, S., 1984, Changes in motility that accompany the acrosome reaction in hyperactivated hamster spermatozoa, Gamete Res. 10: 253–265.Google Scholar
  98. Sullivan, R., and Bleau, G., 1985, Interaction of isolated components from mammalian sperm and egg, Gamete Res. 12: 101–116.Google Scholar
  99. Talbot, P, 1983, Videotape analysis of hamster ovulation in vitro, J. Exp. Zool. 225: 141–148.PubMedGoogle Scholar
  100. Talbot, P, 1984, Hyaluronidase dissolves a component in the hamster zona pellucida, J. Exp. Zool. 229: 309–316.PubMedGoogle Scholar
  101. Talbot, P, 1985, Sperm penetration through oocyte investments in mammals, Am. J. Anat. 174: 331–346.PubMedGoogle Scholar
  102. Talbot, P, and Chacon, R., 1982, In vitro ovulation of hamster oocytes depends on contraction of follicular smooth muscle cells, J. Exp. Zool. 24: 409–415.Google Scholar
  103. Uto, N., Yoshimatsu, N., Lopata, A., and Yanagimachi, R., 1988, Zona-induced acrosome reaction of hamster spermatozoa, J. Exp. Zool. 248: 113–120.PubMedGoogle Scholar
  104. Ward, M. C., 1946, A study of the estrous cycle and the breeding of the golden hamster, Cicretus auratus, Anat. Rec. 94: 139–162.PubMedGoogle Scholar
  105. Wassarman, P. M., 1987, Early events in mammalian fertilization, Annu. Rev. Cell Biol. 3: 109–142.PubMedGoogle Scholar
  106. Wolf, D. P., 1981, The mammalian egg’s block to polyspermy, in: Fertilization and Embryonic Development In vitro ( L. Mastroianni and J. D. Biggers, eds.), Plenum Press, New York, pp. 183–197.Google Scholar
  107. Woolley, D. M., 1977, Evidence for “twisted plane” undulations in golden hamster sperm tails, J. Cell Biol. 75: 851–865.PubMedGoogle Scholar
  108. Yamanaka, H. S., and Soderwall, A. L., 1960, Transport of spermatozoa through the female genital tract of hamsters, Fertil. Steril. 11: 470–474.PubMedGoogle Scholar
  109. Yanagimachi, R., 1969, In vitro acrosome reaction and capacitation of golden hamster spermatozoa by bovine follicular fluid and its fractions, J. Exp. Zool. 170: 269–280.Google Scholar
  110. Yanagimachi, R., 1978, Sperm—egg association in mammals, Curr. Top. Dev. Biol. 12: 83–105.PubMedGoogle Scholar
  111. Yanagimachi, R., 1981, Mechanisms of fertilization in mammals, in: Fertilization and Embryonic Development in Vitro ( L. Mastroianni and J. D. Biggers, eds.), Plenum Press, New York, pp. 81–182.Google Scholar
  112. Yanagimachi, R., 1982, Requiremént of extracellular calcium ions for various stages of fertilization and fertilization related phenomena in the hamster, Gamete Res. 5: 323–344.Google Scholar
  113. Yanagimachi, R., 1988a, Sperm—egg fusion, in: Current Topics in Membranes and Transport ( F. Bonner and N. Duzgunes, eds.), Academic Press, Orlando, FL, pp. 3–43.Google Scholar
  114. Yanagimachi, R., 1988b, Mammalian fertilization, in: The Physiology of Reproduction ( E. Knobil and J. Neill, eds.), Raven Press, New York, pp. 135–185.Google Scholar
  115. Yanagimachi, R., and Chang, M. C., 1963, Fertilization of hamster eggs in vitro, Nature 200: 281–282.PubMedGoogle Scholar
  116. Yanagimachi, R., and Chang, M. C., 1964, In vitro fertilization of golden hamster ova, J. Exp. Zool. 156: 361–376.Google Scholar
  117. Yanagimachi, R., and Phillips, D. M., 1984, The status of acrosomal caps of hamster spermatozoa immediately before fertilization in vitro, Gamete Res. 9: 1–19.Google Scholar
  118. Yoshimatsu, N., and Yanagimachi, R., 1988, Effects of cations and other medium components on the zona-induced acrosome reaction of hamster spermatozoa, Dev. Growth Differ. 30 (6): 651–659.Google Scholar
  119. Yudin, A. I., Cherr, G. N., and Katz, D. E, 1988, Structure of the cumulus matrix and zona pellucida in the golden hamster: A new view of sperm interaction with oocyte-associated extracellular matrices, Cell Tissue Res. 251: 555–564.PubMedGoogle Scholar
  120. Zao, P., and Talbot, P, 1986, Isolation of an insoluble glycoprotein component of golden hamster sperm acrosomes, J. Cell Biol. 103 (5, pt. 2): 239a.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Gary N. Cherr
    • 1
  • Erma Z. Drobnis
    • 2
  1. 1.Bodega Marine LaboratoryUniversity of CaliforniaDavis, Bodega BayUSA
  2. 2.Departments of Zoology and Obstetrics and GynecologyUniversity of CaliforniaDavisUSA

Personalised recommendations