Heat removal

  • Walter Koechner
Part of the Springer Series in Optical Sciences book series (SSOS, volume 1)


Any solid-state laser operating in either cw or pulsed mode of operation must dissipate an appreciable amount of heat. The heat arises because:
  1. 1.

    the energy difference between the pump bands and the fluorescence energy levels is lost to the host lattice through radiationless transitions;

  2. 2.

    the quantum efficiency of the fluorescence processes involved in the laser transitions is less than unity, therefore some of the photon lose their total energy to the host lattice;

  3. 3.

    the spectral distribution of the pump light is such that there is considerable absorption by the host directly, mainly in the ultraviolet and infrared bands, in which case all energy in those spectral regions is converted into heat.



Pump Pulse Heat Removal Beam Divergence Thermal Relaxation Time Pump Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    H. S. Carslaw, J. C. Jaeger: Conduction of Heat in Solids ( Oxford University Press, London, 1948 ), p. 191Google Scholar
  2. 7.2
    S. T. Hsu: Engineering Heat Transfer (D. Van Nostrand, Princeton, N.J., 1963 ), pp. 274–309Google Scholar
  3. 7.3
    W. Koechner: Appl. Opt. 9, 1429 (1970)ADSCrossRefGoogle Scholar
  4. 7.4
    W. Koechner: J. Appl. Phys. 44, 3162 (1973)ADSCrossRefGoogle Scholar
  5. 7.5
    S. Timoshenko, J. N. Goodier: Theory of Elasticity ( McGraw-Hill, New York, 1951 )MATHGoogle Scholar
  6. 7.6
    W. Koechner: J. Appl. Phys. 2, 279 (1973)ADSCrossRefGoogle Scholar
  7. 7.7
    M. Born, E. Wolf: Principles of Optics ( Pergamon Press, London, 1965 )Google Scholar
  8. 7.8
    J. F. Nye: Physical Properties of Crystals (Oxford University Press, London, 1964 )Google Scholar
  9. 7.9
    R. W. Dixon: J. Appl. Phys. 38, 5149 (1967)ADSCrossRefGoogle Scholar
  10. 7.10
    J. D. Foster, L. M. Osterink: J. Appl. Phys. 41, 3656 (1970)ADSCrossRefGoogle Scholar
  11. 7.11
    W. Koechner, D. K. Rice: IEEE J. Quant. Electr. QE-6, 557 (1970)Google Scholar
  12. 7.12
    H. Kogelnik: Bell Syst. Tech. J. 44, 455 (1965)Google Scholar
  13. 7.13
    D. A. LaMarre: High Performance Laser Research, Report AD 840913, American Optical Corp. (June 1968)Google Scholar
  14. 7.14
    W. Koechner: Appl. Opt. 9, 2548 (1970)ADSCrossRefGoogle Scholar
  15. 7.15
    K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, G. W. Roland: Appl. Opt. 11, 999 (1972)ADSCrossRefGoogle Scholar
  16. 7.16
    K. B. Steinbruegge, G. D. Baldwin: Appl. Phys. Letters 25, 220 (1974)ADSCrossRefGoogle Scholar
  17. G. D. Baldwin: Q-switched evaluation of Nd:CaLaSOAP, Final Report AFAL-TR-72–334, Air Force Avionics Lab., Wright Patterson AFB, Ohio (September 1972)Google Scholar
  18. 7.17
    A. Stein: CW YAG laser techniques, Report AD 743979, US Army Electronics Command, Fort Monmouth, N.J. (May 1972)Google Scholar
  19. 7.18
    M. A. Karr: Appl. Opt. 10, 893 (1971)ADSCrossRefGoogle Scholar
  20. 7.19
    L. M. Osterink, J. D. Foster: Appl. Phys. Letters 12, 128 (1968)ADSCrossRefGoogle Scholar
  21. W. C. Scott, M. deWitt: Appl. Phys. Letters 18 (1971)Google Scholar
  22. 7.21
    W. Koechner, D. K. Rice: J. Opt. Soc. Am. 61, 758 (1971)ADSCrossRefGoogle Scholar
  23. 7.22
    S. D. Sims, A. Stein, C. Roth: Appl. Opt. 5, 621 (1966)ADSCrossRefGoogle Scholar
  24. 7.23
    R. L. Townsend, C. M. Stickley, A. D. Maio: Appl. Phys. Letters 7, 94 (1965)ADSCrossRefGoogle Scholar
  25. 7.24
    H. Welling, C. J. Bickart, H. G. Andresen: IEEE Trans. Quant. Electr. QE-1, 223 (1965)Google Scholar
  26. 7.25
    G. D. Baldwin, E. P. Riedel: J. Appl. Phys. 38, 2726 (1967)ADSCrossRefGoogle Scholar
  27. 7.26
    A. P. Veduta, A. M. Leontovich, V. N. Smorchkov: Soy. Phys. JETP 21, 59 (1965)ADSGoogle Scholar
  28. 7.27
    S. Epstein: J. Appl. Phys. 38, 2715 (1967)ADSCrossRefGoogle Scholar
  29. 7.28
    A. Y. Cabezas, L. G. Kornai, R. P. Treat: Appl. Opt. 5, 647 (1966)ADSCrossRefGoogle Scholar
  30. 7.29
    J. W. Carson: Dynamic optical properties of laser materials, Final Tech. Report No. P66–135, Office of Naval Research, Washington, D.C. (1966)Google Scholar
  31. 7.30
    D. C. Burnham Appl. Opt. 9, 1727 (1970)ADSCrossRefGoogle Scholar
  32. 7.31
    D. White, D. Gregg: Appl. Opt. 4, 1034 (1965)ADSCrossRefGoogle Scholar
  33. 7.32
    F. W. Quelle: Appl. Opt. 5, 633 (1966)ADSCrossRefGoogle Scholar
  34. 7.33
    E. P. Riedel, G. D. Baldwin: J. Appl. Phys. 38, 2720 (1967)ADSCrossRefGoogle Scholar
  35. 7.34
    E. Snitzer, C. G. Young: Lasers, Vol. 2, ed. A. K. Levine ( Marcel Dekker, New York, 1968 ), pp. 191–256Google Scholar
  36. 7.35
    E. Matovich: The axial gradient laser, Proc. DOD Conf. on Laser Technology, San Diego, Calif. (1970), pp. 311–361Google Scholar
  37. 7.36
    M: K. Chun, J. T. Bischoff: IEEE J. Quant. Electr. QE-7, 200 (1971)Google Scholar
  38. 7.37
    K. Richter, W. Koechner: Appl. Phys. 3, 205 (1974)ADSCrossRefGoogle Scholar
  39. 7.38
    V. I. Danilovskaya, V. N. Zubchaninova: Temperature stresses forming in cylinders under the effect of a luminous flux, U.S. Government Res. & Dev. Report 70, No. AD-704–020 (1970)Google Scholar
  40. 7.39
    B. A. Ermakov, A. V. Lukin: Soy. Phys. 15, 1097 (1971)Google Scholar
  41. 7.40
    S. D. Sims, A. Stein, C. Roth: Appl. Opt. 6, 579 (1967)ADSCrossRefGoogle Scholar
  42. 7.41
    R. F. Hotz: Appl. Opt, 12, 1834 (1973)ADSCrossRefGoogle Scholar
  43. 7.42
    G. Benedetti-Michelangeli, S. Martelluci: Appl. Opt. 8, 1447 (1969)ADSCrossRefGoogle Scholar
  44. 7.43
    T. J. Gleason, J. S. Kruger, R. M. Curnutt: Appl. Opt. 12, 2942 (1973)ADSCrossRefGoogle Scholar
  45. 7.
    a W. Rundle, Korad Division, Hadron, Inc., unpublished results.Google Scholar
  46. 44b E. A. Teppo: Nd:YAG Laser Technology, NWC Techn. Memo 2534 Appendix C (1975)Google Scholar
  47. E. A. Teppo: Techn. Note 4051–2 (1972). Naval Weapons Center, China Lake, Calif.Google Scholar
  48. 7.45
    J. D. Foster, R. F. Kirk: Report NASA-CR-1771, NASA, Washington, D.C. (1971)Google Scholar
  49. 7.46
    R. A. Kaplan: Conductive cooling of a ruby rod, Technical Note No. 109, TRG, Melville, N.Y. (1964)Google Scholar
  50. 7.47
    M. M. Heil, D. L. Flannery: A review of axial gradient laser technology, Proc. DOD Conference, San Diego, Calif. (1970), p. 287Google Scholar
  51. 7.48
    W. F. Hagen: Technical Report AFAL-TR-73–111, Air Force Avionics Lab., Wright Patterson AFB, Ohio (1973)Google Scholar
  52. 7.49
    W. F. Hagen, C. G. Young, J. Keefe, D. W. Cuff: Segmented Nd:glass lasers, Proc. DOD Conference, San Diego, Calif. (1970), p. 363Google Scholar
  53. 7.50
    E. Matovich, G. E. Meyers: 1 KW axial gradient Nd:YAG laser, Final Report N00014–70-C-0406, ONR, Boston (1971)Google Scholar
  54. 7.51
    E. Matovich: Segmented ruby oscillator-amplifier, Report AFALTR-69–317, Air Force Avionics Lab., Wright Patterson AFB, Ohio (1970)Google Scholar
  55. 7.52
    W. B. Jones, L. M. Goldman, J. P. Chernoch, W. S. Martin: IEEE J. Quant. Electr. QE-8, 534 (1972)Google Scholar
  56. 7.53
    J. P. Chernoch, W. S. Martin, J. C. Almasi: Performance characteristics of a face-pumped, face-cooled laser, the mini-FPL, Technical Report AFAL-TR-71–3, Air Force Avionics Lab., Wright Patterson AFB, Ohio (1971)Google Scholar
  57. 7.54
    J. P. Chernoch: High power Nd: YAG Mini-FPL, Final report AFALTR-75–93, Air Forcp Avionics Lab., WPAFB, Ohio (1975)Google Scholar
  58. 7.55
    G. J. Hulme, W. B. Jones: Total internal reflection face pumped laser, Proc. Soc. Photo-Optical Instr. Eng. 69, 38 (1975)Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Walter Koechner
    • 1
  1. 1.Korad Division of Hadron, Inc.Santa MonicaUSA

Personalised recommendations