Skip to main content

Properties of solid-state laser materials

  • Chapter
Solid-State Laser Engineering

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 1))

Abstract

Materials for laser operation must possess sharp fluorescent lines, strong absorption bands, and a reasonably high quantum efficiency for the fluorescent transition of interest. These characteristics are generally shown by solids (crystals or glass) which incorporate in small amounts elements in which optical transitions can occur between states of inner, incomplete electron shells. Thus the transition metals, the rare earth (lanthanide) series, and the actinide series are of interest in this connection. The sharp fluorescence lines in the spectra of crystals doped with these elements result from the fact that the electrons involved in transitions in the optical regime are shielded by the outer shells from the surrounding crystal lattice. The corresponding transitions are similar to those of the free ions. In addition to a sharp fluorescence emission line, a laser substance suitable for optical pumping should possess broad-band pump transitions since, as a rule, only broad-band light sources, i.e., incandescent lamps, cw arc lamps, or flashlamps are available as pump sources for optically pumped solid-state lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. L. Schawlow, C. H. Townes: Phys. Rev. 112, 1940 (1958)

    Article  ADS  Google Scholar 

  2. T. H. Maiman: Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  3. P. P. Sorokin, M. J. Stevenson: Phys. Rev. Letters 5, 557 ( 1960

    Article  ADS  Google Scholar 

  4. P. P. Sorokin, M. J. Stevenson: Advances in Quantum Electronics ( Columbia University Press, New York, 1961 ), p. 65

    Google Scholar 

  5. E. Snitzer: Phys. Rev. Letters 7, 444 (1961)

    Article  ADS  Google Scholar 

  6. L. F. Johnson, L. Nassau: Proc. IRE 49, 1704 (1961).

    Google Scholar 

  7. J. E. Geusic, H. M. Marcos, L. G. Van Uitert: Appl. Phys. Letters 4, 182 (1964)

    Article  ADS  Google Scholar 

  8. E. Snitzer, R. F. Woodcock, J. Segre: IEEE J. Quant. Electr. QE-4, 360 (1968)

    Google Scholar 

  9. E. Snitzer, C. G. Young: in Lasers, 2, ed. A. K. Levine ( Marcel Dekker, New York, 1968 ), pp. 191–256

    Google Scholar 

  10. C. G. Young: Proc. IEEE 57, 1267 (1969)

    Article  Google Scholar 

  11. L. DeShazer, M. Bass, U. Ranon, T. K. Guka, E. D. Reed, T. W. Strozyk, L. Rothrock: Laser Operation of Neodymium in YVO4 and Gadolinium Gallium Garnet (GGG) and of Holmium in YVO4, 8th Int. Quant. Electr. Conf., San Francisco, Calif. (1974)

    Google Scholar 

  12. C. D. Brandle, T. C. Vanderleeden: IEEE J. Quant. Electr. QE-10, 67 (1974)

    Google Scholar 

  13. L. F. Johnson, J. E. Geusic, L. G. Van Uitert: Appl. Phys. Letters 7, 127 (1965)

    Article  ADS  Google Scholar 

  14. D. P. Devor, B. H. Soffer: IEEE J. Quant. Electr. QE-8, 231 (1972)

    Google Scholar 

  15. L. A. Riseberg: Appl. Phys. Letters 23, 127 (1973)

    Article  ADS  Google Scholar 

  16. M. J. Weber, M. Bass, K. Andringa: Appl. Phys. Letters 15, 342 (1969)

    Article  ADS  Google Scholar 

  17. M. J. Weber, M. Bass, K. Andringa: Czochralski Grown Laser Materials, Tech. Report AFML-TR-70–258, Air Force Mat. Lab., WPAFB (1970)

    Google Scholar 

  18. R. F. Belt, J. R. Latore, R. Uhrin, J. Paxton: Appl. Phys. Letters 25, 218 (1974)

    Article  ADS  Google Scholar 

  19. M. J. Bina, C. R. Jones: J. Opt. Soc. Am. 63, 463 (1973)

    Article  ADS  Google Scholar 

  20. M. J. Weber: IEEE J. Quant. Electr. QE-9, 1079 (1973)

    Google Scholar 

  21. R. V. Alves, R. A. Buchanan, K. A. Wickersheim, E. A. C. Yates: J. Appl. Phys. 42, 3043 (1971)

    Article  ADS  Google Scholar 

  22. R. C. Ohlmann, K. B. Steinbruegge, R. Mazelsky: Appl. Optics 7, 905 (1968)

    Article  ADS  Google Scholar 

  23. K. B. Steinbruegge, R. H. Hopkins, G. W. Roland: Increased Energy Storage Neodymium Laser Material: Silicate Oxyapatite, Tech. Report AFAL-TR-72–37, Air Force Avia. Lab., WPAFB (1972)

    Google Scholar 

  24. K. B. Steinbruegge, G. D. Baldwin: Appl. Phys. Letters 25, 220 (1974)

    Article  ADS  Google Scholar 

  25. G. D. Baldwin: Q-Switched Evaluation of CaLa SOAP: Nd, Tech. Report AFAL-TR-72–334, Air Force Avionics Lab., WPAFB (1972)

    Google Scholar 

  26. W. W. Krühler, J. P. Jeser, H. G. Danielmeyer: Appl. Phys. 2, 329 (1973)

    Article  ADS  Google Scholar 

  27. H. P. Weber, T. C. Damen, H. G. Danielmeyer, B. C. Tofield: Appl. Phys. Letters 22, 534 (1973)

    Article  ADS  Google Scholar 

  28. H. P. Weber, P. F. Liao, B. C. Tofield: IEEE J. Quant. Electr. QE-10, 563 (1974)

    Google Scholar 

  29. 27a H. P. Weber, P. F. Liao, B. C. Tofield, P. M. Bridenbaugh: Appl. Phys. Letters 26, 692 (1975)

    Article  ADS  Google Scholar 

  30. 27b J. G. Gualtieri, T. R. Aucoin: Appl. Phys. Letters 28, 189 (1976)

    Article  ADS  Google Scholar 

  31. H. G. Danielmeyer, W. W. Krühler, J. P. Jeser: Appl. Phys. 2, 335 (1973)

    Article  ADS  Google Scholar 

  32. K. Napan, A. M. Broger: J. Appl. Phys. 33, 3064 (1962)

    Article  ADS  Google Scholar 

  33. L. L. Harper, J. R. Thornton: Increased Energy Storage Nd Laser Material: Sodium Lanthanum Molybdate, Tech. Report AFAL-TR72–38, Air Force Avionics Lab., WPAFB (1972)

    Google Scholar 

  34. J. R. O’Connor: Appl. Phys. Letters 9, 407 (1966)

    Article  ADS  Google Scholar 

  35. H. G. McKnight, L. Rothrock: Research & Development Work for the Growth of Single Crystal Yttrium Orthovanadate, Report DAAB07–72-C-022, U.S. Army Electronics Command (ECOM), Ft. Monmouth, N.J. (1972)

    Google Scholar 

  36. C. F. Cline, R. C. Morris; Doped Beryllium Lanthanate Crystals, U.S. Patent 3,866,142 (February 1975). See also Data Sheet La2Be2O5, Allied Chemical Corp., Morristown, N.J. (1975)

    Google Scholar 

  37. L. F. Johnson: J. Appl. Phys. 33, 756 (1962) and J. Appl. Phys. 34, 897 (1963)

    Article  ADS  Google Scholar 

  38. 35a E. P. Chickles: Appl. Phys. Letters 19, 119 (1971); and Stimulated Emission at 0.85 p in Era: YLF, 7th Int’l. Quant. Electr. Conf., Montreal, Canada (1972)

    Google Scholar 

  39. 35b D. P. Devor: 2.06 pm Laser performance and design options for rangefinder and illuminator applications, IEEE/OSA Conf. Laser Eng. and Appl. (May 1975)

    Google Scholar 

  40. E. J. Sharp, D. T. Horowitz, T. E. Miller: J. Appl. Phys. 44, 5399 (1973)

    Article  ADS  Google Scholar 

  41. C. D. Greskovich: Oxide Ceramic Laser, Report 73 CRD 218, General Electric Comp., Schenectady, N.Y. (July 1973)

    Google Scholar 

  42. G. Müller, N. Neuroth: J. Appl. Phys. 44, 2315 (1973)

    Article  ADS  Google Scholar 

  43. M. J. Weber, M. Bass, G. A. deMars: J. Appl. Phys. 42, 301 (1971)

    Article  ADS  Google Scholar 

  44. W. F. Krupke, J. B. Gruber: J. Chem. Phys. 41, 1225 (1964)

    Article  ADS  Google Scholar 

  45. Z. J. Kiss, R. C. Duncan: Proc. IRE 50, 1531 (1962)

    Google Scholar 

  46. S. A. Pollack: Proc. IEEE 51, 1793 (1963)

    Google Scholar 

  47. E. Snitzer: Appl. Phys. Letters 6, 45 (1965)

    Article  ADS  Google Scholar 

  48. K. O. White, E. H. Holt: The Erbium Doped Glass Laser, Report ECOM-5294, U.S. Army, Fort Monmouth, N.J. (1970)

    Google Scholar 

  49. D. P. Devor: High Power, High Efficient 2.1 pm Laser Device, Tech. Report AFAL-TR-71–181, Air Force Avionics Lab., WPAFB (1971)

    Google Scholar 

  50. T. A. Laird, L. G. DeShazer: IEEE J. Quant. Electr. QE-11, 97 (1975)

    Google Scholar 

  51. M. J. Weber, M. Bass, E. Comperchio, L. A. Riseberg: IEEE J. Quant. Electr. QE-7, 497 (1971)

    Google Scholar 

  52. L. M. Hobrock, L. G. DeShazer, W. F. Krupke, G. A. Keig, D. E. Watter: Four-Level Operation of Tm:Cr:YAIO3 Laser at 2.35 pm, VII Int’l. Quant. Electr. Conf., Montreal, Canada (1972)

    Google Scholar 

  53. Z. J. Kiss, R. J. Pressley: Proc. IEEE 54, 1236 (1966)

    Article  Google Scholar 

  54. J. R. Thornton, W. D. Fountain, G. W. Flint, T. G. Crow: Appl. Opt. 8, 1087 (1969)

    Article  ADS  Google Scholar 

  55. L. F. Johnson: Lasers, 1, ed. A. K. Levine ( Marcel Dekker, New York, 1966 ), p. 137

    Google Scholar 

  56. R. J. Pressley: Handbook of Lasers (Chemical Rubber Co., Cleveland, Ohio, 1971 )

    Google Scholar 

  57. R. W. G. Wyckoff: Crystal Structures ( Wiley-Interscience, New York, 1963 )

    Google Scholar 

  58. K. Nassau: Applied Solid State Science, 2, ed. R. Wolfe ( Academic Press, New York, 1970 )

    Google Scholar 

  59. O. C. Cronemeyer: J. Opt. Soc. Am. 56, 1703 (1964)

    Article  ADS  Google Scholar 

  60. D. M. Dodd, D. L. Wood, R. L. Barns: J. Appl. Phys. 35, 1183 (1964)

    Article  ADS  Google Scholar 

  61. T. H. Maiman, R. H. Hoskins, I. T. D’Haenens, C. K. Asawa, V. Evtuhov: Phys. Rev. 123, 1151 (1961)

    Article  ADS  Google Scholar 

  62. P. G. Kriukov, V. S. Letokhov: Laser Handbook, 1, eds. E. T. Arrechi, E. O. DuBois ( North Holland, Amsterdam, 1972 ), pp. 561–595

    Google Scholar 

  63. F. J. McClung, S. E. Schwarz: J. Appl. Phys. 33, 3139 (1962)

    Article  ADS  Google Scholar 

  64. C. J. Hubbard, E. W. Fisher: Appl. Opt. 3, 1499 (1964)

    Article  Google Scholar 

  65. A. I. Mahan, C. Bitterli, S. M. Connor, D. G. Grant: J. Opt. Soc. Am. 59, 49 (1969)

    Article  ADS  Google Scholar 

  66. D. F. Nelson, M. D. Sturge: Phys. Rev. 137A, 1117 (1965)

    Article  ADS  Google Scholar 

  67. I. J. D’Haenens, C. K. Asawa: J. Appl. Phys. 33, 3201 (1962)

    Article  ADS  Google Scholar 

  68. A. L. Schawlow: Advances in Quantum Electronics ( Columbia University Press, New York, 1961 ), p. 50

    Google Scholar 

  69. M. G. Holland: J. Appl. Phys. 33, 2910 (1962)

    Article  ADS  Google Scholar 

  70. V. Evtuhov, T. K. Neeland: Lasers, 1, ed. A. K. Levine ( Marcel Dekker, New York, 1966 ), pp. 1–136

    Google Scholar 

  71. Airtron Division of Litton Industries, Data Sheet: Ruby Laser Crystals; Crystal Products Division of Union Carbide, Data Sheet: Ruby Laser Rods

    Google Scholar 

  72. W. Koechner: Rev. Sci. Instruments 41, 1699 (1970)

    Article  ADS  Google Scholar 

  73. C. A. Burrus, J. Stone: Appl. Phys. Letters 26, 318 (1975)

    Article  ADS  Google Scholar 

  74. T. Kushida, J. E. Geusic: Phys. Rev. Letters 21, 1172 (1968)

    Article  ADS  Google Scholar 

  75. Solid State Maser Research, Contract DA-36–039-AMC-02333(E), U.S. Army Electronics Material Agency, Final Report (1965)

    Google Scholar 

  76. T. Kushida, H. M. Marcos, J. E. Geusic: Phys. Rev. 167, 289 (1968)

    Article  ADS  Google Scholar 

  77. U. Ranon, L. G. DeShazer, T. K. Guha, E. D. Reed: Spectroscopy of Nd3+ in ED 2 Laser Glasses and the Laser Cross Section in Nd: YAG, Digest of Technical Papers, 8th Int. Quant. Electr. Conf., San Franciso, Calif. (1974)

    Google Scholar 

  78. 74a J. K. Neeland, V. Evtuhov: Phys. Rev. 156, 244 (1967)

    Article  ADS  Google Scholar 

  79. 74b M. Birnbaum, J. A. Gelbwachs: J. Appl. Phys. 43, 2335 (1972)

    Article  ADS  Google Scholar 

  80. 74e M. J. Weber, T. E. Varitimos: J. Appl. Phys. 42, 4996 (1971)

    Article  ADS  Google Scholar 

  81. 74d S. Singh, R. G. Smith, L. G. VanUitert: Phys. Rev. BIO, 2566 (1974)

    Google Scholar 

  82. J. A. Koningstein, J. E. Geusic: Phys. Rev. 136, 711 (1964)

    Article  ADS  Google Scholar 

  83. A. A. Zlenko, V. A. Sychugor, G. P. Shipulo: Soy. J. Quant. Electr. 2, 474 (1973)

    Article  ADS  Google Scholar 

  84. P. H. Klein, W. J. Croft: J. Appl. Phys. 38, 1603 (1967)

    Article  ADS  Google Scholar 

  85. H. F. Mahlein: IEEE J. Quant. Electr. QE-6, 529 (1970)

    Google Scholar 

  86. C. G. Bethea: IEEE J. Quant. Electr. QE-9, 254 (1973)

    Google Scholar 

  87. R. G. Smith: IEEE J. Quant. Electr. QE-4, 505 (1968)

    Google Scholar 

  88. M. Birnbaum: J. Appl. Phys. 44, 2928 (1973)

    Article  ADS  Google Scholar 

  89. R. W. Wallace, S. E. Harris: Appl. Phys. Letters 15, 111 (1969)

    Article  ADS  Google Scholar 

  90. R. W. Wallace: IEEE J. Quant. Electr. QE-7, 203 (1971)

    Google Scholar 

  91. L. A. Riseberg, W. C. Holton: J. Appl. Phys. 43, 1876 (1972)

    Article  ADS  Google Scholar 

  92. J. W. Strozyk: IEEE J. Quant. Electr. QE-7, 467 (1971)

    Google Scholar 

  93. Z. J. Kiss, R. C. Duncan: Appl. Phys. Letters 5, 200 (1964)

    Article  ADS  Google Scholar 

  94. S. A. Pollack: J. Appl. Phys. 38, 5083 (1967)

    Article  ADS  Google Scholar 

  95. R. F. Belt: Laser Focus, 44 (1970), and 51 (1973)

    Google Scholar 

  96. Crystal Products Division of Union Carbide, San Diego, Calif. Data Sheet: YAG:Nd Data; Airtron Division of Litton Industries Data Sheet: YAG Laser Materials; Allied Chemical Corp., Morristown, N.J. Data Sheet: Nd: YAG

    Google Scholar 

  97. Data Sheets on Laser Glasses: Owens-Illinois, Toledo, Ohio; Schott Optical Glass, Mainz, Germany; Hoya Glass Works, Tokyo, Japan

    Google Scholar 

  98. D. Duston: IEEE J. Quant. Electr. QE-6, 3 (1970)

    Google Scholar 

  99. M. Michon: Phys. Letters 19, 219 (1965)

    Article  ADS  Google Scholar 

  100. R. Dumanchin: IEEE J. Quant. Electr. QE-7, 53 (1971)

    Google Scholar 

  101. P. C. Magnante: IEEE J. Quant. Electr. QE-8, 440 (1972)

    Google Scholar 

  102. A. A. Mak, D. S. Prilezhaev, V. A. Serebryakov, A. D. Starikov: Optics and Spectroscopy 33, 381 (1972)

    Google Scholar 

  103. Anonymous: Fundamentals of Damage in Laser Glass, Report NMAB-271, National Academy of Sciences, Washington, D.C. (1970)

    Google Scholar 

  104. P. B. Mauer: Appl. Opt. 3, 153 (1963)

    Article  ADS  Google Scholar 

  105. P. B. Mauer: Appl. Opt. 2, 87 (1963)

    Article  ADS  Google Scholar 

  106. E. Snitzer: Appl. Opt. 5, 1487 (1966)

    Article  ADS  Google Scholar 

  107. E. Snitzer: Proc. IEEE 54, 1249 (1966)

    Article  Google Scholar 

  108. W. F. Krupke: IEEE J. Quant. Electr. QE-10, 450 (1974)

    Google Scholar 

  109. A. A. Kaminskii: Soy. Phys. JETP 24, 33 (1967)

    ADS  Google Scholar 

  110. R. B. Allen, S. J. Scalise, R. E. DeKinder: IEEE J. Quant. Electr. QE-5, 345 (1969)

    Google Scholar 

  111. W. W. Holloway, M. Kesigian, F. F. Y. Wang, G. F. Sullivan: J. Opt. Soc. Am. 56, 1409 (1966)

    Article  Google Scholar 

  112. M. Bass, M. J. Weber: Appl. Phys. Letters 17, 395 (1970)

    Article  ADS  Google Scholar 

  113. D. Rice: Private communication, Korad Division, Hadron Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koechner, W. (1976). Properties of solid-state laser materials. In: Solid-State Laser Engineering. Springer Series in Optical Sciences, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-8519-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-8519-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-8521-0

  • Online ISBN: 978-1-4757-8519-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics