Critical Periods

  • Nigel W. Daw
Part of the Perspectives in Vision Research book series (PIVR)


We have known for several decades that visual deprivation affects infants more than adults. Children can compensate for strabismus, anisometropia, and cataract before the age of 7. They can also compensate for any surgery or optical corrections that change the image on the retina back to normal. There is a period of time during development, known as the critical period, during which the anatomy and physiology of the visual system are mutable, or plastic. However, once the critical period is past, compensation for visual deprivation rarely occurs.


Visual Cortex Critical Period Primary Visual Cortex Ocular Dominance Direction Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsson, M., Fabian, G., and Sjostrand, J., 1990, A longitudinal study of a population based sample of astigmatic children. II. The changeability of anisometropia, Acta Ophthalmol. 68:435–440.Google Scholar
  2. Almeder, L. M., Peck, L. B., and Howland, H. C, 1990, Prevalence of anisometropia in volunteer laboratory and school screening populations, Invest. Ophthalmol. Vis. Sci. 31:2448–2455.PubMedGoogle Scholar
  3. Atkinson, J., 1993, Infant vision screening: Prediction and prevention of strabismus and amblyopia from refractive screening in the Cambridge photorefraction program, in: Early Visual Development, Normal and Abnormal (K. Simons, ed.), Oxford University Press, London, pp. 335–348.Google Scholar
  4. Awaya, S., Sugawara, M., and Miyake, S., 1979, Observations in patients with occlusion amblyopia, Trans. Ophthalmol. Soc. U.K. 99:447–454.PubMedGoogle Scholar
  5. Banks, M. S., Aslin. R. N., and Letson, R. D., 1975, Sensitive period for the development of human binocular vision, Science 190:675–677.PubMedCrossRefGoogle Scholar
  6. Birch, E. E., and Stager, D. R., 1985, Monocular acuity and stereopsis in infantile esotropia, Invest. Ophthalmol Vis. Sci. 26:1624–1630.PubMedGoogle Scholar
  7. Birch, E. E., Stager, D. R., and Wright, W. W., 1986, Grating acuity development after early surgery for congenital unilateral cataract, Arch. Ophthalmol. 104:1783–1787.PubMedCrossRefGoogle Scholar
  8. Birnbaum, M. H., Koslowe, K., and Sanet, R., 1977, Success in amblyopia therapy as a function of age: A literature survey, Arch. Ophthalmol. 54:269–275.Google Scholar
  9. Blakemore, C., and Van Sluyters, R. C., 1974, Reversal of the physiological effects of monocular deprivation in kittens: Further evidence for a sensitive period, J. Physiol. (London) 237:195–216.Google Scholar
  10. Chapman, B., and Stryker, M. P., 1993, Development of orientation selectivity in ferret visual cortex and effects of deprivation, J. Neurosci. 13:5251–5262.PubMedGoogle Scholar
  11. Darian-Smith, C., and Gilbert, C. D., 1994, Axonal sprouting accompanies functional reorganization in adult cat striate cortex, Nature 368:737–740.PubMedCrossRefGoogle Scholar
  12. Daw, N. W., 1994, Mechanisms of plasticity in the visual cortex, Invest. Ophthalmol. Vis. Sci. 35:4168–4179.PubMedGoogle Scholar
  13. Daw, N. W., and Wyatt, H. J., 1976, Kittens reared in a unidirectional environment: Evidence for a critical period, J. Physiol. (London) 257:155–170.Google Scholar
  14. Daw, N. W., Berman, N. E. J., and Ariel, M., 1978, Interaction of critical periods in the visual cortex of kittens, Science 199:565–567.PubMedCrossRefGoogle Scholar
  15. Daw, N. W., Fox, K., Sato, H., and Czepita, D., 1992, Critical period for monocular deprivation in the cat visual cortex, J. Neurophysiol. 67:197–202.PubMedGoogle Scholar
  16. Dobson, V., and Sebris, S. L., 1989, Longitudinal study of acuity and stereopsis in infants with or at-risk for esotropia, Invest. Ophthalmol. Vis. Sci. 30:1146–1158.PubMedGoogle Scholar
  17. Enoch, J. M., and Rabinowicz, I. M., 1976, Early surgery and visual correction of an infant born with unilateral lens opacity, Doc. Ophthalmol. 41:371–382.PubMedCrossRefGoogle Scholar
  18. Gilbert, C. D., and Wiesel, T. N., 1992, Receptive field dynamics in adult primary visual cortex, Nature 356:150–152.PubMedCrossRefGoogle Scholar
  19. Harwerth, R. S., Smith, E. L., Duncan, G. C, Crawford, M. L. J., and von Noorden, G. K., 1986, Multiple sensitive periods in the development of the primate visual system, Science 232:235–238.PubMedCrossRefGoogle Scholar
  20. Hohmann, A., and Creutzfeldt, O. D., 1975, Squint and the development of binocularity in humans, Nature 254:613–614.PubMedCrossRefGoogle Scholar
  21. Hubel, D. H., and Wiesel, T. N., 1970, The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J. Physiol. (London) 206:419–436.Google Scholar
  22. Jacobson, S., Mohindra, I., and Held, R., 1981, Age of onset of amblyopia in infants with esotropia, Doc. Ophthalmol. 30:210–216.Google Scholar
  23. Jampolsky, A., 1978, Unequal visual inputs and strabismus management, a comparison of human and animal strabismus, in: Symposium on Strabismus. Trans. New Orleans Acad. Ophthalmol., Mosby, St. Louis.Google Scholar
  24. Jones, K. R., Spear, P. D., and Tong, L., 1984, Critical periods for effects on monocular deprivation: Differences between striate and extrastriate cortex, J. Neurosci. 4:2543–2552.PubMedGoogle Scholar
  25. Kim, D. S., and Bonhoeffer, T., 1993, Chronic observation of the emergence of iso-orientation domains in kitten visual cortex, Soc. Neurosci. Ahstr. 19:1800.Google Scholar
  26. Kiorpes, L., 1989, The development of spatial resolution and contrast sensitivity in naturally strabismic monkeys, Clin. Vision Sci. 4:279–293.Google Scholar
  27. Kiorpes, L., Carlson, M. R., and Alfi, D., 1989, Development of visual acuity in experimentally strabismic monkeys, Clin. Vision Sci. 4:95–106.Google Scholar
  28. LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191:1-51.PubMedCrossRefGoogle Scholar
  29. Levitt, F. B., and Van Sluyters, R. C, 1982, The sensitive period for strabismus in the kitten, Dev. Brain Res. 3:323–327.CrossRefGoogle Scholar
  30. Maurer, D., and Lewis, T. L., 1993, Visual outcomes after infantile cataract, in: Early Visual Development, Normal and Abnormal (K. Simons, ed.), Oxford University Press, London, pp. 454–484.Google Scholar
  31. Mitchell, D. E., 1991, The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens, Philos. Trans. R. Soc. London Ser. B 333:51–79.CrossRefGoogle Scholar
  32. Mohindra, I., Zwaan, J., Held, R., Brill, S., and Zwaan, F., 1985, Development of acuity and stereopsis in infants with esotropia, Ophthalmology 92:691–697.PubMedGoogle Scholar
  33. Mower, G. D., Caplan, C. J., Christen, W. G., and Duffy, F. H., 1985, Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex, J. Comp. Neurol. 235:448–466.PubMedCrossRefGoogle Scholar
  34. Odom, J. V., Hoyt, C. S., and Marg, E., 1982, Eye patching and visual evoked potential acuity in children four months to eight years old, Am. J. Optom. Physiol. Opt. 59:706–717.PubMedCrossRefGoogle Scholar
  35. Olson, C. R., and Freeman, R. D., 1980, Profile of the sensitive period for monocular deprivation in kittens, Exp. Brain Res. 39:17–21.PubMedGoogle Scholar
  36. Pettet, M. W., and Gilbert, C. D., 1992, Dynamic changes in receptive-field size in cat primary visual cortex, Proc. Natl. Acad. Sci. USA 89:8366–8370.PubMedCrossRefGoogle Scholar
  37. Rodman, H. R., 1994, Development of inferior temporal cortex in the monkey, Cereb. Cortex 5:484–498.Google Scholar
  38. Shatz, C. J., and Stryker, M. P., 1978, Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation, J. PhysioJ. (London) 281:267–283.Google Scholar
  39. Sherman, S. M., 1985, Development of retinal projections to the cat’s lateral geniculate nucleus, Trends Neurosci. 8:350–355.CrossRefGoogle Scholar
  40. Sherman, S. M., and Stone, J., 1973, Physiological normality of the retina in visually deprived cats, Brain Res. 60:224–230.PubMedCrossRefGoogle Scholar
  41. Stryker, M. P., and Harris, W. A., 1986, Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6:2117–2133.PubMedGoogle Scholar
  42. Tierney, D. W., 1989, Vision recovery in amblyopia after contralateral subretinal hemorrhage, J. Am. Optom. Assoc. 60:281–283.PubMedGoogle Scholar
  43. Vaegen, and Taylor, D., 1979, Critical period for deprivation amblyopia in children, Trans. Ophthalmol. Soc. UK 99:432–439.Google Scholar
  44. Vereecken, E. P., and Brabant, P., 1984, Prognosis for vision in amblyopia after loss of the good eye, Arch. Ophthalmol. 102:220–224.PubMedCrossRefGoogle Scholar
  45. von Noorden, G. K., 1990, Binocular Vision and Ocular Motility, Mosby, St. Louis.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Nigel W. Daw
    • 1
  1. 1.Yale University Medical SchoolNew Haven, ConnecticutUK

Personalised recommendations