Skip to main content

Physiological and Anatomical Changes That Result from Optical and Motor Deficits

  • Chapter
Visual Development

Part of the book series: Perspectives in Vision Research ((PIVR))

Abstract

Our understanding of what happens in various forms of visual deprivation has increased enormously over the last 35 years, as a result of experiments with animals. The seminal experiments were done by David Hubel and Torsten Wiesel in the early 1960s. They were awarded the Nobel prize in 1981 for this work (Wiesel, 1982), and for their work on the organization of the visual system in normal animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blakemore, C., and Cooper, G. F., 1970, Development of the brain depends on the visual environment, Nature 228:477–478.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, C., and Van Sluyters, R. C., 1974, Reversal of the physiological effects of monocular deprivation in kittens: Further evidence for a sensitive period, J. Physiol. (London) 237:195–216.

    CAS  Google Scholar 

  • Chino, Y. M., Cheng, H., Smith, E. L., Garraghty, P. E., Roe, A. W., and Sur, M., 1994, Early discordant binocular vision disrupts signal transfer in the lateral geniculate nucleus, Proc. Natl. Acad. Sci. USA 91:6938–6942.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, M. L. J., Smith, E. L., Harwerth, R. S., and von Noorden, G. K., 1984, Stereoblind monkeys have few binocular neurons, Invest. Ophthalmol. Vis. Sci. 25:779–781.

    PubMed  CAS  Google Scholar 

  • Crewther, D. P., and Crewther, S. G., 1990, Neural site of strabismic amblyopia in cats: Spatial frequency deficit in primary cortical neurons, Exp. Brain Res. 79:615–622.

    Article  PubMed  CAS  Google Scholar 

  • Crewther, S. G., and Crewther, D. P., 1993, Amblyopia and suppression in binocular cortical neurones of strabismic cat, Neurosci. Res. 4:1083–1086.

    CAS  Google Scholar 

  • Crewther, S. G., Crewther, D. P., and Cleland, B. G., 1985, Convergent strabismic amblyopia in cats, Exp. Brain Res. 60:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Cynader, M. S., Berman, N., and Hein, A., 1975, Cats raised in a one-directional world: Effects on receptive fields in visual cortex and superior colliculus, Exp. Brain Res. 22:267–280.

    Article  PubMed  CAS  Google Scholar 

  • Cynader, M. S., Gardner, J. P., and Mustari, M. J., 1984, Effects of neonatally induced strabismus on binocular responses in cat area 18, Exp. Brain Res. 53:384–399.

    Article  PubMed  CAS  Google Scholar 

  • Daw, N. W., and Wyatt, H. J., 1976, Kittens reared in a unidirectional environment: Evidence for a critical period, J. Physiol. (London) 257:155–170.

    CAS  Google Scholar 

  • Daw, N. W., Fox, K., Sato, H., and Czepita, D., 1992, Critical period for monocular deprivation in the cat visual cortex, J. Neurophysiol. 67:197–202.

    PubMed  CAS  Google Scholar 

  • Dews, P. D., and Wiesel, T. N., 1970, Consequences of monocular deprivation on visual behaviour in kittens, J. Physiol. (London) 206:437–455.

    CAS  Google Scholar 

  • Distler, C., and Hoffmann, K. P., 1991, Depth perception and cortical physiology in normal and innate microstrabismic cats, Vis. Neurosci. 6:25–41.

    Article  PubMed  CAS  Google Scholar 

  • Eggers, H. M., and Blakemore, C, 1978, Physiological basis of anisometropic amblyopia, Science 201:264–266.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R. D., and Tsumoto, T., 1983, An electrophysiological comparison of convergent and divergent strabismus in the cat: Electrical and visual activation of single cortical cells, J. Neurophysiol. 49:238–253.

    PubMed  CAS  Google Scholar 

  • Grant, S., and Berman, N. E. J., 1991, Mechanism of anomalous retinal correspondence: Maintenance of binocularity with alteration of receptive-field position in the lateral suprasylvian (LS) visual area of strabismic cats, Vis. Neurosci. 7:259–281.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, A. E., Movshon, J. A., Eggers, H. M., Gizzi, M. S., Boothe, R. G., and Kiorpes, L., 1987, Effects of early unilateral blur on the macaques’s visual system. II. Anatomical observations, J. Neurosci. 7:1327–1339.

    PubMed  CAS  Google Scholar 

  • Hirsch, H. V. B., and Spinelli, D. N., 1970, Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats, Science 168:869–871.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1965, Binocular interaction in striate cortex of kittens reared with artificial squint, J. Neurophysiol. 28:1041–1059.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., Wiesel, T. N., and LeVay, S., 1975, Functional architecture of area 17 in normal and monocularly deprived macaque monkeys, Cold Spring Harbor Symp. Quant. Biol. 40:581–589.

    Article  Google Scholar 

  • Hubel, D. H., Wiesel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. R. Soc. London Ser. B. 278:377–409.

    Article  CAS  Google Scholar 

  • Ikeda, H., and Wright, M. J., 1976, Properties of LGN cells in kittens reared with convergent squint: A neurophysiological demonstration of amblyopia, Exp. Brain Res. 25:63–77.

    Article  PubMed  CAS  Google Scholar 

  • Kalil, R. E., Spear, P. D., and Langsetmo, A., 1984, Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus, J. Neurophysiol. 52:514–537.

    PubMed  CAS  Google Scholar 

  • Kiorpes, L., and Boothe, R. G., 1981, Naturally occurring strabismus in monkeys (Macaca nemestrina), Invest. Ophthalmol. Vis. Sci. 20:257–263.

    PubMed  CAS  Google Scholar 

  • LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 1991:1–51.

    Article  Google Scholar 

  • Movshon, J. A., 1976, Reversal of the physiological effects of monocular deprivation in the kitten’s visual cortex, J. Physiol. (London) 261:125–174.

    CAS  Google Scholar 

  • Movshon, J. A., Eggers, H. M., Gizzi, M. S., Hendrickson, A. E., Kiorpes, L., and Boothe, R. G., 1987, Effects of early unilateral blur on the macaque’s visual system. III. Physiological observations, J. Neurosci. 7:1340–1351.

    PubMed  CAS  Google Scholar 

  • Mower, G. D., Caplan, C. J., Christen, W. G., and Duffy, F. H., 1985, Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex, J. Comp. Neurol. 235:448–466.

    Article  PubMed  CAS  Google Scholar 

  • Sengpiel, F., Blakemore, C., Kind, P. C., and Harrad, R., 1994, Interocular suppression in the visual cortex of strabismic cats, J. Neurosci. 14:6855–6871.

    PubMed  CAS  Google Scholar 

  • Shatz, C. J., and Stryker, M. P., 1978, Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation, J. Physiol. (London) 281:267–283.

    CAS  Google Scholar 

  • Sherman, S. M., 1985, Development of retinal projections to the cat’s lateral geniculate nucleus, Trends Neurosci. 8:350–355.

    Article  Google Scholar 

  • Sherman, S. M., and Stone, J., 1973, Physiological normality of the retina in visually deprived cats, Brain Res. 60:224–230.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W., Rauschecker, J., and von Grunau, M., 1979, Squint affects striate cortex cells encoding horizontal image movements, Brain Res. 170:182–186.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W., von Grunau, M. W., and Rauschecker, J. P., 1980, Functional amblyopia in kittens with unilateral exotropia. I. Electrophysiological assessment, Exp. Brain Res. 40:294–304.

    Article  PubMed  CAS  Google Scholar 

  • Sireteanu, R., and Best, J., 1992, Squint-induced modification of visual receptive fields in the lateral suprasylvian cortex of the cat: Binocular interaction, vertical effect and anomalous correspondence, Eur. J. Neurosci. 4:235–242.

    Article  PubMed  Google Scholar 

  • Smith, E. L., Harwerth, R. S., and Crawford, M. L. J., 1985, Spatial contrast sensitivity deficits in monkeys produced by optically induced anisometropia, Invest. Ophthalmol. Vis. Sci. 26:330–342.

    PubMed  Google Scholar 

  • Spear, P. D., Tong, L., and Langsetmo, A., 1978, Striate cortex neurons of binocularly deprived kittens respond to visual stimuli through the closed eyelids, Brain Res. 155:141–146.

    Article  PubMed  CAS  Google Scholar 

  • Sur, M., Humphrey, A. H., and Sherman, S. M., 1982, Monocular deprivation affects X-and Y-cell terminations in cats, Nature 300:183–185.

    Article  PubMed  CAS  Google Scholar 

  • Tieman, S. B., 1984, Effects of monocular deprivation on geniculocortical synapses in the cat, J. Comp. Neurol. 222:166–176.

    Article  PubMed  CAS  Google Scholar 

  • Tumosa, N., Tieman, S. B., and Tieman, D. G., 1989, Binocular competition affects the pattern and intensity of ocular activation columns in the visual cortex of cats, Vis. Neurosci. 2:391–407.

    Article  PubMed  CAS  Google Scholar 

  • von Grunau, M. W., and Singer, W., 1980, Functional amblyopia in kittens with unilateral exotropia. II. Correspondence between behavioural and electrophysiological assessment, Exp.Brain Res. 40:305–310.

    Article  Google Scholar 

  • von Noorden, G. K., Dowling, J. E., and Ferguson, D. C., 1970, Experimental amblyopia in monkeys, Arch. Ophthalmol. 84:206–214.

    Article  Google Scholar 

  • Wiesel, T. N., 1982, Postnatal development of the visual cortex and the influence of environment, Nature 299:583–591.

    Article  PubMed  CAS  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., 1963a, Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body, J. Neurophysiol. 26:978–993.

    PubMed  CAS  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., 1963b, Single cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol. 26:1003–1017.

    PubMed  CAS  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., 1965, Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens, J. Neurophysiol. 28:1029–1040.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daw, N.W. (1995). Physiological and Anatomical Changes That Result from Optical and Motor Deficits. In: Visual Development. Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6940-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6940-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6942-5

  • Online ISBN: 978-1-4757-6940-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics