Anatomical Development of the Visual System

  • Nigel W. Daw
Part of the Perspectives in Vision Research book series (PIVR)


The development of the nervous system is a complex and astounding phenomenon. The human nervous system consists of over ten billion cells, and each has its own individual job to do. Cells in the various parts of the nervous system are generated over the same period, and their projections grow out simultaneously but in different directions. Somehow these billions of projections have to cross a plethora of other fibers along the way, in many cases traversing a long distance, in order to find their way to the right nucleus and finally to the right cells in the nucleus.


Visual Cortex Superior Colliculus Lateral Geniculate Nucleus Layer Versus Ventricular Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, C. P., and Cepko, C. L., 1990, Cellular migration patterns in the developing mouse cerebral cortex, Development 110:713–732.PubMedGoogle Scholar
  2. Blakemore, C, and Molnar, Z., 1990, Factors involved in the establishment of specific interconnections between thalamus and cerebral cortex, Cold Spring Harbor Symp. Quant. Biol. 55:491–504.PubMedCrossRefGoogle Scholar
  3. Bourgeois, J. P., and Rakic, P., 1993, Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage, J. Neurosci. 13:2801–2820.PubMedGoogle Scholar
  4. Callaway, E. M., and Katz, L. C., 1990, Emergence and refinement of clustered horizontal connections in cat striate cortex, J. Neurosci. 10:1134–1153.PubMedGoogle Scholar
  5. Callaway, E. M., and Katz, L. C., 1991, Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex, Proc. Natl. Acad. Sci. USA 88:745–749.PubMedCrossRefGoogle Scholar
  6. Callaway, E. M., and Katz, L. C., 1992, Development of axonal arbors of layer 4 spiny stellate neurons in cat striate cortex, J. Neurosci. 12:570–582.PubMedGoogle Scholar
  7. Caviness, V. S., 1976, Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse, J. Comp. Neurol. 170:435–448.PubMedCrossRefGoogle Scholar
  8. Chapman, B., and Stryker, M. P., 1993, Development of orientation selectivity in ferret visual cortex and effects of deprivation, J. Neurosci. 13:5251–5262.PubMedGoogle Scholar
  9. Chun, J. J. M., and Shatz, C. J., 1989, Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population, J. Comp. Neurol. 282:555–569.PubMedCrossRefGoogle Scholar
  10. Cragg, B. G., 1975, The development of synapses in the visual system of the cat, J. Comp. Neurol. 160:147–166.PubMedCrossRefGoogle Scholar
  11. Dehay, C., Kennedy, H., Bullier, J., and Berland, M., 1988, Absence of interhemispheric connections of area 17 during development in the monkey, Nature 331:348–350.PubMedCrossRefGoogle Scholar
  12. Dubin, M. W., Stark, L. A., and Archer, S. M., 1986, A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway, J. Neurosci. 6:1021–1036.PubMedGoogle Scholar
  13. Friauf, E., and Shatz, C. J., 1991, Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex, J. Neurophysiol. 66:2059–2071.PubMedGoogle Scholar
  14. Friauf, E., McConnell, S. K., and Shatz, C. J., 1990, Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex, J. Neurosci. 10:2601–2613.PubMedGoogle Scholar
  15. Friedman, S., and Shatz, C. J., 1990, The effects of prenatal intracranial infusion of tetrodotoxin on naturally occurring retinal ganglion cell death and optic nerve ultrastructure, Eur. J. Neurosci. 2:243–253.PubMedCrossRefGoogle Scholar
  16. Ghosh, A., Antonini, A., McConnell, S. K., and Shatz, C. J., 1990, Requirement for subplate neurons in the formation of thalamocortical connections, Nature 347:179–181.PubMedCrossRefGoogle Scholar
  17. Guillery, R. W., 1974, Visual pathways in albinos, Sci. Am. 230(5):44–54.PubMedCrossRefGoogle Scholar
  18. Henderson, Z., and Blakemore, C., 1986, Organization of the visual pathways in the newborn kitten, Neurosci. Res. 3:628–659.PubMedCrossRefGoogle Scholar
  19. Hubel, D. H., and Wiesel, T. N., 1963, Receptive fields of cells in striate cortex of very young, visually inexperienced kittens, J. Neurophysiol. 26:994–1002.PubMedGoogle Scholar
  20. Innocenti, G. M., 1981, Growth and reshaping of axons in the establishment of visual callosal connections, Science 212:824–827.PubMedCrossRefGoogle Scholar
  21. Katz, L. C., 1991, Specificity in the development of vertical connections in cat striate cortex, Eur. J. Neurosci. 3:1–9.PubMedCrossRefGoogle Scholar
  22. Kostovic, I., and Rakic, P., 1990, Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain, J. Comp. Neurol. 297:441–470.PubMedCrossRefGoogle Scholar
  23. LaMantia, A. S., and Rakic, P., 1990, Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey, J. Neurosci. 10:2156–2175.PubMedGoogle Scholar
  24. LaVail, M. M., Rapaport, D. H., and Rakic, P., 1991, Cytogenesis in the monkey retina, J. Comp. Neurol. 309:86–114.CrossRefGoogle Scholar
  25. Lemmon, V., and Pearlman, A. L., 1981, Does laminar position determine the receptive field properties of cortical neurons? A study of corticotectal cells in area 17 of the normal mouse and the reeler mutant, J. Neurosci. 1:83–93.PubMedGoogle Scholar
  26. LeVay, S., and Stryker, M. P., 1979, The development of ocular dominance columns in the cat, Soc. Neurosci. Symp. 4:83–98.Google Scholar
  27. LeVay, S., Stryker, M. P., and Shatz, C. J., 1978, Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study, J. Comp. Neurol. 179:223–244.PubMedCrossRefGoogle Scholar
  28. LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191:1–51.PubMedCrossRefGoogle Scholar
  29. Lorente de Nó, R., 1938, Cerebral cortex: Architectonics, intracortical connections, in: Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, London, pp. 288–313.Google Scholar
  30. Luhmann, H. J., Millan, L. M., and Singer, W., 1986, Development of horizontal intrinsic connections in cat striate cortex, Exp. Brain Res. 63:443–448.PubMedCrossRefGoogle Scholar
  31. Lund, J. S., Boothe, R. G., and Lund, R. D., 1977, Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): A Golgi study from fetal day 127 to postnatal maturity, J. Comp. Neurol. 176:149–187.PubMedCrossRefGoogle Scholar
  32. Luskin, M. B., and Shatz, C. J., 1985, Neurogenesis of the cat’s primary visual cortex, J. Comp. Neurol. 242:611–631.PubMedCrossRefGoogle Scholar
  33. Marin-Padilla, M., 1971, Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization, Z. Anat. Entwicklungsgesch. 134:117–145.PubMedCrossRefGoogle Scholar
  34. Meyer, G., and Ferres-Torres, R., 1984, Postnatal maturation of nonpyramidal neurons in the visual cortex of the cat, J. Comp. Neurol. 228:226–244.PubMedCrossRefGoogle Scholar
  35. Miller, K. D., 1992, Development of orientation columns via competition between ON-and OFF-center inputs, Neuroreport 3:73–76.PubMedCrossRefGoogle Scholar
  36. Molliver, M. E., Kostovic, T., and Van der Loos, H. V, 1973, The development of synapses in cerebral cortex of the human fetus, Brain Res. 50:403–407.PubMedCrossRefGoogle Scholar
  37. Naegele, J. R., Jhaveri, S., and Schneider, G. E., 1988, Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster, J. Comp. Neurol. 277:593–607.PubMedCrossRefGoogle Scholar
  38. Nelson, S. B., and LeVay, S., 1985, Topographic organization of the optic radiation of the cat, J. Comp. Neurol. 240:322–330.PubMedCrossRefGoogle Scholar
  39. Ng, A. Y., and Stone, J., 1982, The optic nerve of the cat: Appearance and loss of axons during normal development, Dev. Brain Res. 5:263–271.CrossRefGoogle Scholar
  40. Novak, N., and Bolz, J., 1993, Formation of specific efferent connections in organotypic slice cultures from rat visual cortex cocultured with lateral geniculate nucleus and superior colliculus, Eur. J. Neurosci. 5:15–24.PubMedCrossRefGoogle Scholar
  41. Payne, B. R., Pearson, H. E., and Cornwell, P., 1988, Development of connections in cat visual and 75 auditory cortex, in: Cerebral Cortex: Development and Maturation of Cerebral Cortex (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 309–389.Google Scholar
  42. Price, D. J., and Blakemore, C., 1985, Regressive events in the postnatal development of association projections in the visual cortex, Nature 316:721–724.PubMedCrossRefGoogle Scholar
  43. Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol. 145:61–83.PubMedCrossRefGoogle Scholar
  44. Rakic, P., 1974, Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition, Science 183:425–427.PubMedCrossRefGoogle Scholar
  45. Rakic, P., 1976, Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature 261:467–471.PubMedCrossRefGoogle Scholar
  46. Rakic, P., 1977, Prenatal development of the visual system in rhesus monkey, Philos. Trans. R. Soc. London Ser. B 278:245–260.CrossRefGoogle Scholar
  47. Rakic, P., 1992, An overview development of the primate visual system: From photoreceptors to cortical modules, in: The Visual System from Genesis to Maturity (R. Lent, ed.), Birkhauser, Boston, pp. 1–17.Google Scholar
  48. Rakic, P., and Riley, K. P., 1983a, Overproduction and elimination of retinal axons in the fetal rhesus monkey, Science 219:1441–1444.PubMedCrossRefGoogle Scholar
  49. Rakic, P., and Riley, K. P., 1983b, Regulation of axon number in primate optic nerve by prenatal binocular competition, Nature 305:135–137.PubMedCrossRefGoogle Scholar
  50. Ramoa, A. S., Campbell, G., and Shatz, C. J., 1989, Retinal ganglion β cells project transiently to the superior colliculus during development, Proc. Natl. Acad. Sci. USA 86:2061–2065.PubMedCrossRefGoogle Scholar
  51. Shatz, C. J., and Luskin, M. B., 1986, The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex, J. Neurosci. 6:3655–3668.PubMedGoogle Scholar
  52. Shatz, C. J., and Rakic, P., 1981, The genesis of efferent connections from the visual cortex of the fetal rhesus monkey, J. Comp. Neurol. 196:287–307.PubMedCrossRefGoogle Scholar
  53. Shatz, C. J., and Stryker, M. P., 1988, Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents, Science 242:87–89.PubMedCrossRefGoogle Scholar
  54. Simon, D. K., Prusky, G. T., O’Leary, D. D. M., and Constantine-Paton, M., 1992, N-methyl-D-aspartate receptor antagonists disrupt the formation of a mammalian neural map, Proc. Natl. Acad. Sci. USA 89:10593–10597.PubMedCrossRefGoogle Scholar
  55. Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA 50:703–710.PubMedCrossRefGoogle Scholar
  56. Sretavan, D. W., and Shatz, C. J., 1986, Prenatal development of retinal ganglion cell axons: Segregation into eye-specific layers within the cat’s lateral geniculate nucleus, J. Neurosci. 6:234–251.PubMedGoogle Scholar
  57. Stanfield, B. B., and O’Leary, D. D. M., 1985, The transient corticospinal projection from the occipital cortex during the postnatal development of the rat, J. Comp. Neurol. 238:236–248.PubMedCrossRefGoogle Scholar
  58. Stryker, M. P., and Harris, W. A., 1986, Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6:2117–2133.PubMedGoogle Scholar
  59. Toyama, K., Komatsu, Y., Yamamoto, N., and Kurotani, T., 1993, In vitro studies of visual cortical development and plasticity, Prog. Neurobiol. 41:543–563.PubMedCrossRefGoogle Scholar
  60. Walsh, C., and Cepko, C. L., 1988, Clonally related cortical cells show several migration patterns, Science 241:1342–1345.PubMedCrossRefGoogle Scholar
  61. Wiesel, T. N., and Hubel, D. H., 1974, Ordered arrangement of orientation columns in monkeys lacking visual experience, J. Comp. Neurol. 158:307–318.PubMedCrossRefGoogle Scholar
  62. Williams, R. W., and Rakic, P., 1988, Elimination of neurons from the rhesus monkey’s lateral geniculate nucleus during development, J. Comp. Neurol. 272:424–436.PubMedCrossRefGoogle Scholar
  63. Williams, R. W., Bastiani, M. J., Lia, B., and Chalupa, L. M., 1986, Growth cones, dying axons and developmental fluctuations in the fiber population of the cat’s optic nerve, J. Comp. Neurol. 246:32–69.PubMedCrossRefGoogle Scholar
  64. Winfield, D. A., 1983, The postnatal development of synapses in the different laminae of the visual cortex in the normal kitten and in kittens with eyelid suture, Dev. Brain Res. 9:155–169.CrossRefGoogle Scholar
  65. Yamamoto, N., Kurotani, T., and Toyama, K., 1989, Neural connections between the lateral geniculate nucleus and visual cortex in vitro, Science 245:192–194.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Nigel W. Daw
    • 1
  1. 1.Yale University Medical SchoolNew Haven, ConnecticutUK

Personalised recommendations