Skip to main content

Anatomical Development of the Visual System

  • Chapter
  • 72 Accesses

Part of the book series: Perspectives in Vision Research ((PIVR))

Abstract

The development of the nervous system is a complex and astounding phenomenon. The human nervous system consists of over ten billion cells, and each has its own individual job to do. Cells in the various parts of the nervous system are generated over the same period, and their projections grow out simultaneously but in different directions. Somehow these billions of projections have to cross a plethora of other fibers along the way, in many cases traversing a long distance, in order to find their way to the right nucleus and finally to the right cells in the nucleus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, C. P., and Cepko, C. L., 1990, Cellular migration patterns in the developing mouse cerebral cortex, Development 110:713–732.

    PubMed  CAS  Google Scholar 

  • Blakemore, C, and Molnar, Z., 1990, Factors involved in the establishment of specific interconnections between thalamus and cerebral cortex, Cold Spring Harbor Symp. Quant. Biol. 55:491–504.

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois, J. P., and Rakic, P., 1993, Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage, J. Neurosci. 13:2801–2820.

    PubMed  CAS  Google Scholar 

  • Callaway, E. M., and Katz, L. C., 1990, Emergence and refinement of clustered horizontal connections in cat striate cortex, J. Neurosci. 10:1134–1153.

    PubMed  CAS  Google Scholar 

  • Callaway, E. M., and Katz, L. C., 1991, Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex, Proc. Natl. Acad. Sci. USA 88:745–749.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, E. M., and Katz, L. C., 1992, Development of axonal arbors of layer 4 spiny stellate neurons in cat striate cortex, J. Neurosci. 12:570–582.

    PubMed  CAS  Google Scholar 

  • Caviness, V. S., 1976, Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse, J. Comp. Neurol. 170:435–448.

    Article  PubMed  Google Scholar 

  • Chapman, B., and Stryker, M. P., 1993, Development of orientation selectivity in ferret visual cortex and effects of deprivation, J. Neurosci. 13:5251–5262.

    PubMed  CAS  Google Scholar 

  • Chun, J. J. M., and Shatz, C. J., 1989, Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population, J. Comp. Neurol. 282:555–569.

    Article  PubMed  CAS  Google Scholar 

  • Cragg, B. G., 1975, The development of synapses in the visual system of the cat, J. Comp. Neurol. 160:147–166.

    Article  PubMed  CAS  Google Scholar 

  • Dehay, C., Kennedy, H., Bullier, J., and Berland, M., 1988, Absence of interhemispheric connections of area 17 during development in the monkey, Nature 331:348–350.

    Article  PubMed  CAS  Google Scholar 

  • Dubin, M. W., Stark, L. A., and Archer, S. M., 1986, A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway, J. Neurosci. 6:1021–1036.

    PubMed  CAS  Google Scholar 

  • Friauf, E., and Shatz, C. J., 1991, Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex, J. Neurophysiol. 66:2059–2071.

    PubMed  CAS  Google Scholar 

  • Friauf, E., McConnell, S. K., and Shatz, C. J., 1990, Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex, J. Neurosci. 10:2601–2613.

    PubMed  CAS  Google Scholar 

  • Friedman, S., and Shatz, C. J., 1990, The effects of prenatal intracranial infusion of tetrodotoxin on naturally occurring retinal ganglion cell death and optic nerve ultrastructure, Eur. J. Neurosci. 2:243–253.

    Article  PubMed  Google Scholar 

  • Ghosh, A., Antonini, A., McConnell, S. K., and Shatz, C. J., 1990, Requirement for subplate neurons in the formation of thalamocortical connections, Nature 347:179–181.

    Article  PubMed  CAS  Google Scholar 

  • Guillery, R. W., 1974, Visual pathways in albinos, Sci. Am. 230(5):44–54.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, Z., and Blakemore, C., 1986, Organization of the visual pathways in the newborn kitten, Neurosci. Res. 3:628–659.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1963, Receptive fields of cells in striate cortex of very young, visually inexperienced kittens, J. Neurophysiol. 26:994–1002.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., 1981, Growth and reshaping of axons in the establishment of visual callosal connections, Science 212:824–827.

    Article  PubMed  CAS  Google Scholar 

  • Katz, L. C., 1991, Specificity in the development of vertical connections in cat striate cortex, Eur. J. Neurosci. 3:1–9.

    Article  PubMed  Google Scholar 

  • Kostovic, I., and Rakic, P., 1990, Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain, J. Comp. Neurol. 297:441–470.

    Article  PubMed  CAS  Google Scholar 

  • LaMantia, A. S., and Rakic, P., 1990, Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey, J. Neurosci. 10:2156–2175.

    PubMed  CAS  Google Scholar 

  • LaVail, M. M., Rapaport, D. H., and Rakic, P., 1991, Cytogenesis in the monkey retina, J. Comp. Neurol. 309:86–114.

    Article  CAS  Google Scholar 

  • Lemmon, V., and Pearlman, A. L., 1981, Does laminar position determine the receptive field properties of cortical neurons? A study of corticotectal cells in area 17 of the normal mouse and the reeler mutant, J. Neurosci. 1:83–93.

    PubMed  CAS  Google Scholar 

  • LeVay, S., and Stryker, M. P., 1979, The development of ocular dominance columns in the cat, Soc. Neurosci. Symp. 4:83–98.

    Google Scholar 

  • LeVay, S., Stryker, M. P., and Shatz, C. J., 1978, Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study, J. Comp. Neurol. 179:223–244.

    Article  PubMed  CAS  Google Scholar 

  • LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191:1–51.

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó, R., 1938, Cerebral cortex: Architectonics, intracortical connections, in: Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, London, pp. 288–313.

    Google Scholar 

  • Luhmann, H. J., Millan, L. M., and Singer, W., 1986, Development of horizontal intrinsic connections in cat striate cortex, Exp. Brain Res. 63:443–448.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J. S., Boothe, R. G., and Lund, R. D., 1977, Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): A Golgi study from fetal day 127 to postnatal maturity, J. Comp. Neurol. 176:149–187.

    Article  PubMed  CAS  Google Scholar 

  • Luskin, M. B., and Shatz, C. J., 1985, Neurogenesis of the cat’s primary visual cortex, J. Comp. Neurol. 242:611–631.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla, M., 1971, Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization, Z. Anat. Entwicklungsgesch. 134:117–145.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, G., and Ferres-Torres, R., 1984, Postnatal maturation of nonpyramidal neurons in the visual cortex of the cat, J. Comp. Neurol. 228:226–244.

    Article  PubMed  CAS  Google Scholar 

  • Miller, K. D., 1992, Development of orientation columns via competition between ON-and OFF-center inputs, Neuroreport 3:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Molliver, M. E., Kostovic, T., and Van der Loos, H. V, 1973, The development of synapses in cerebral cortex of the human fetus, Brain Res. 50:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Naegele, J. R., Jhaveri, S., and Schneider, G. E., 1988, Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster, J. Comp. Neurol. 277:593–607.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, S. B., and LeVay, S., 1985, Topographic organization of the optic radiation of the cat, J. Comp. Neurol. 240:322–330.

    Article  PubMed  CAS  Google Scholar 

  • Ng, A. Y., and Stone, J., 1982, The optic nerve of the cat: Appearance and loss of axons during normal development, Dev. Brain Res. 5:263–271.

    Article  Google Scholar 

  • Novak, N., and Bolz, J., 1993, Formation of specific efferent connections in organotypic slice cultures from rat visual cortex cocultured with lateral geniculate nucleus and superior colliculus, Eur. J. Neurosci. 5:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Payne, B. R., Pearson, H. E., and Cornwell, P., 1988, Development of connections in cat visual and 75 auditory cortex, in: Cerebral Cortex: Development and Maturation of Cerebral Cortex (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 309–389.

    Google Scholar 

  • Price, D. J., and Blakemore, C., 1985, Regressive events in the postnatal development of association projections in the visual cortex, Nature 316:721–724.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol. 145:61–83.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1974, Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition, Science 183:425–427.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1976, Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature 261:467–471.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1977, Prenatal development of the visual system in rhesus monkey, Philos. Trans. R. Soc. London Ser. B 278:245–260.

    Article  CAS  Google Scholar 

  • Rakic, P., 1992, An overview development of the primate visual system: From photoreceptors to cortical modules, in: The Visual System from Genesis to Maturity (R. Lent, ed.), Birkhauser, Boston, pp. 1–17.

    Google Scholar 

  • Rakic, P., and Riley, K. P., 1983a, Overproduction and elimination of retinal axons in the fetal rhesus monkey, Science 219:1441–1444.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., and Riley, K. P., 1983b, Regulation of axon number in primate optic nerve by prenatal binocular competition, Nature 305:135–137.

    Article  PubMed  CAS  Google Scholar 

  • Ramoa, A. S., Campbell, G., and Shatz, C. J., 1989, Retinal ganglion β cells project transiently to the superior colliculus during development, Proc. Natl. Acad. Sci. USA 86:2061–2065.

    Article  PubMed  CAS  Google Scholar 

  • Shatz, C. J., and Luskin, M. B., 1986, The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex, J. Neurosci. 6:3655–3668.

    PubMed  CAS  Google Scholar 

  • Shatz, C. J., and Rakic, P., 1981, The genesis of efferent connections from the visual cortex of the fetal rhesus monkey, J. Comp. Neurol. 196:287–307.

    Article  PubMed  CAS  Google Scholar 

  • Shatz, C. J., and Stryker, M. P., 1988, Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents, Science 242:87–89.

    Article  PubMed  CAS  Google Scholar 

  • Simon, D. K., Prusky, G. T., O’Leary, D. D. M., and Constantine-Paton, M., 1992, N-methyl-D-aspartate receptor antagonists disrupt the formation of a mammalian neural map, Proc. Natl. Acad. Sci. USA 89:10593–10597.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA 50:703–710.

    Article  PubMed  CAS  Google Scholar 

  • Sretavan, D. W., and Shatz, C. J., 1986, Prenatal development of retinal ganglion cell axons: Segregation into eye-specific layers within the cat’s lateral geniculate nucleus, J. Neurosci. 6:234–251.

    PubMed  CAS  Google Scholar 

  • Stanfield, B. B., and O’Leary, D. D. M., 1985, The transient corticospinal projection from the occipital cortex during the postnatal development of the rat, J. Comp. Neurol. 238:236–248.

    Article  PubMed  CAS  Google Scholar 

  • Stryker, M. P., and Harris, W. A., 1986, Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex, J. Neurosci. 6:2117–2133.

    PubMed  CAS  Google Scholar 

  • Toyama, K., Komatsu, Y., Yamamoto, N., and Kurotani, T., 1993, In vitro studies of visual cortical development and plasticity, Prog. Neurobiol. 41:543–563.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C., and Cepko, C. L., 1988, Clonally related cortical cells show several migration patterns, Science 241:1342–1345.

    Article  PubMed  CAS  Google Scholar 

  • Wiesel, T. N., and Hubel, D. H., 1974, Ordered arrangement of orientation columns in monkeys lacking visual experience, J. Comp. Neurol. 158:307–318.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. W., and Rakic, P., 1988, Elimination of neurons from the rhesus monkey’s lateral geniculate nucleus during development, J. Comp. Neurol. 272:424–436.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. W., Bastiani, M. J., Lia, B., and Chalupa, L. M., 1986, Growth cones, dying axons and developmental fluctuations in the fiber population of the cat’s optic nerve, J. Comp. Neurol. 246:32–69.

    Article  PubMed  CAS  Google Scholar 

  • Winfield, D. A., 1983, The postnatal development of synapses in the different laminae of the visual cortex in the normal kitten and in kittens with eyelid suture, Dev. Brain Res. 9:155–169.

    Article  Google Scholar 

  • Yamamoto, N., Kurotani, T., and Toyama, K., 1989, Neural connections between the lateral geniculate nucleus and visual cortex in vitro, Science 245:192–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daw, N.W. (1995). Anatomical Development of the Visual System. In: Visual Development. Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6940-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6940-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6942-5

  • Online ISBN: 978-1-4757-6940-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics