Functional Organization of the Visual System

  • Nigel W. Daw
Part of the Perspectives in Vision Research book series (PIVR)


The visual system must convert the pattern of light that falls on the retina into perceptions. This involves a transformation of the visual image in several dimensions. Take, for example, depth perception. There are several cues to depth perception, including disparity, vergence, perspective, shading, texture gradients, interposition, motion parallax, size, and accommodation. For a complete perception, all of these must be analyzed. Where some cues conflict with others (see Kaufman, 1974), the system must resolve the conflicts and come to a decision. Where the cues agree with each other, the system produces a perception of the distance of an object from the subject, its position in relation to other objects nearby, and the three-dimensional shape of the object.


Ganglion Cell Visual Cortex Receptive Field Superior Colliculus Bipolar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright, T. D., Desimone, R., and Gross, C. G., 1984, Columnar organization of directionally selective cells in visual area MT of the macaque, J. Neurophysiol. 51:16–31.PubMedGoogle Scholar
  2. Born, R. T., and Tootell, R. B. H., 1992, Segregation of global and local motion processing in primate middle temporal visual area, Nature 357:497–499.PubMedCrossRefGoogle Scholar
  3. Boycott, B. B., and Dowling, J. E., 1969, Organization of the primate retina: Light microscopy, Philos. Trans. R. Soc. London Ser. B. 255:109–184.CrossRefGoogle Scholar
  4. Cleland, B. G., and Levick, W. R., 1974, Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification, J. Physiol. (London) 240: 457–492.Google Scholar
  5. Daw, N. W., 1967, Goldfish retina: Organization for simultaneous color contrast, Science 158:942–944.PubMedCrossRefGoogle Scholar
  6. Daw, N. W., 1984, The psychology and physiology of colour vision, Trends Neurosci. 7:330–336.CrossRefGoogle Scholar
  7. De Monasterio, F. M., and Gouras, P., 1975, Functional properties of ganglion cells of the rhesus monkey retina, J. Physiol. (London) 251:167–195.Google Scholar
  8. Enroth-Cugell, C., and Robson, J. G., 1966, The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol. (London) 187:517–552.Google Scholar
  9. Famiglietti, E. V., and Kolb, H., 1976, Structural basis for ON-and OFF-center responses in retinal ganglion cells, Science 194:193–195.PubMedCrossRefGoogle Scholar
  10. Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci 7:3378–3415.PubMedGoogle Scholar
  11. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in cat’s visual cortex, J. Physiol. (London) 160:106–154.Google Scholar
  12. Kaufman, L., 1974, Sight and Mind, Oxford University Press, London.Google Scholar
  13. Kuffler, S. W., 1953, Discharge patterns and functional organization of mammalian retina, J. Neurophysiol. 16:37–68.PubMedGoogle Scholar
  14. Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4:309–356.PubMedGoogle Scholar
  15. Livingstone, M. S., and Hubel, D. H., 1987, Connections between layer 4B of area 17 and thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7:3371–3377.PubMedGoogle Scholar
  16. MacNichol, E. F., and Svaetichin, G., 1958, Electric responses from the isolated retinas of fishes, Am. J. Ophthalmol. 46:26–46.PubMedGoogle Scholar
  17. Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J. Neurophysiol. 20:408–434.PubMedGoogle Scholar
  18. Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T., 1985, The analysis of moving visual patterns, in: Pattern Recognition Mechanisms (C. Chaga, R. Gattass, and C. Gross, eds.), Pontifical Academy of Sciences, Vatican City, pp. 117–151.Google Scholar
  19. Poggio, G. F., Gonzalez, F., and Krause, F., 1988, Stereoscopic mechanisms in monkey visual cortex: Binocular correlation and disparity selectivity, J. Neurosci. 8:4531–4550.PubMedGoogle Scholar
  20. Polyak, S. L., 1941, The Retina, University of Chicago Press, Chicago.Google Scholar
  21. Rosenquist, A., 1985, Connections of visual cortical areas in the cat, in: Cerebral Cortex (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 81–117.Google Scholar
  22. Schiller, P. H., and Malpeli, J. G., 1977, Properties and tectal projections of monkey ganglion cells, J. Neurophysiol. 40:428–445.PubMedGoogle Scholar
  23. Sherman, S. M., and Koch, C, 1986, The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus, Exp. Brain Res. 63:1-20.PubMedCrossRefGoogle Scholar
  24. Stone, J., 1983, Parallel Processing in the Visual System, Plenum Press, New York.CrossRefGoogle Scholar
  25. Stone, J., and Fukuda, Y., 1974, Properties of cat retinal ganglion cells: A comparison of W-cells with X-and Y-cells, J. Neurophysiol. 37:722–748.PubMedGoogle Scholar
  26. Tanaka, K., Hikosaka, K., Saito, H. E., Yukie, M., Fukada, Y, and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey, J. Neurosci. 6:134–144.PubMedGoogle Scholar
  27. Van Essen, D. C., Anderson, C. H., and Felleman, D. J., 1992, Information processing in the primate visual system: An integrated systems perspective, Science 255:419–423.PubMedCrossRefGoogle Scholar
  28. Werblin, F. S., and Dowling, J. E., 1969, Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording, J. Neurophysiol. 32:339–355.PubMedGoogle Scholar
  29. Wiesel, T. N., and Hubel, D. H., 1966, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey, J. Neurophysiol. 29:1115–1156.PubMedGoogle Scholar
  30. Zeki, S. M., 1977, Colour coding in the superior temporal sulcus of the rhesus monkey visual cortex, Proc. R. Soc. London B Ser. 197:195–223.CrossRefGoogle Scholar
  31. Zeki, S. M., 1978, Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex, J. Physiol. (London) 277:273–290.Google Scholar
  32. Zeki, S. M., 1983, Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours, Neuroscience 9:741–765.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Nigel W. Daw
    • 1
  1. 1.Yale University Medical SchoolNew Haven, ConnecticutUK

Personalised recommendations