Advertisement

Long-Term Potentiation as a Model

  • Nigel W. Daw
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

Long-term potentiation (LTP) is a strengthening of synaptic transmission that was first discovered in the hippocampus (Bliss and Lomo, 1973). If one stimulates the afférents to the hippocampus at a high rate (100 Hz for 3 sec), the excitatory postsynaptic potentials in the hippocampal pyramidal cells are subsequently found to be larger than normal, and to rise more quickly. The effect lasts for several hours, and can last for as long as the preparation does.

Keywords

Nitric Oxide Arachidonic Acid NMDA Receptor Visual Cortex Synaptic Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alford, S., Frenguelli, B. G., Schofield, J. G., and Collingridge, G. L., 1993, Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors, J. Physiol (London) 469:693–716.Google Scholar
  2. Artola, A., and Singer, W., 1987, Long-term potentiation and NMDA receptors in rat visual cortex, Nature 330:649–652.PubMedCrossRefGoogle Scholar
  3. Bannerman, D. M., Chapman, P. F., Kelly, P. A. T., Butcher, S. P., and Morris, R. G. M., 1994a, Inhibition of nitric oxide synthase does not impair spatial learning, J. Neurosci. 14:7404–7414.PubMedGoogle Scholar
  4. Bannerman, D. M., Chapman, P. F., Kelly, P. A. T., Butcher, S. P., and Morris, R. G. M., 1994b, Inhibition of nitric oxide synthase does not prevent the induction of long-term potentiation in vivo, J. Neurosci. 14:7415–7425.PubMedGoogle Scholar
  5. Barbour, B., Szatkowski, M., Ingledew, N., and Attwell, D., 1989, Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells, Nature 342:918–920.PubMedCrossRefGoogle Scholar
  6. Bashir, Z. I., Bortolotto, Z. A., Davies, C. H., Beretta, N., Irving, A. J., Seal, A. J., Henley, J. M., Jane, D. E., Watkins, J. C, and Collingridge, G. L., 1993, Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors, Nature 363:347–350.PubMedCrossRefGoogle Scholar
  7. Bliss, T. V. P., and Collingridge, G. L., 1993, A synaptic model of memory: Long-term potentiation in the hippocampus, Nature 361:31–39.PubMedCrossRefGoogle Scholar
  8. Bliss, T. V. P., and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path, J. Physiol. (London) 232:331–356.Google Scholar
  9. Bliss, T. V. P., Errington, M. L., Lynch, M. A., and Williams, J. H., 1990, Presynaptic mechanisms in hippocampal long-term potentiation, Cold Spring Harbor Symp. Quant. Biol. 55:119–129.PubMedCrossRefGoogle Scholar
  10. Bohme, G. A., Bon, C, Stutzmann, J. M., Doble, A., and Blanchard, J. C., 1991, Possible involvement of nitric oxide in long-term potentiation, Eur. J. Pharmacol. 199:379–381.PubMedCrossRefGoogle Scholar
  11. Chetkovitch, D. M., Gray, R., Johnston, D., and Sweatt, J. D., 1991, N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus, Proc. Natl. Acad. Sci. USA 88:6467–6471.CrossRefGoogle Scholar
  12. Collingridge, G. L., Kehl, S. J., and McLennan, H., 1983, Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus, J. Physiol. (London) 334:33–46.Google Scholar
  13. Collingridge, G. L., Herron, C. E., and Lester, R. A. J., 1988, Frequency-dependent N-methyl-D-aspartate receptor-mediated synaptic transmission in rat hippocampus, J. Physiol. (London) 399:301–312.Google Scholar
  14. Dingledine, R., 1983, N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells, J. Physiol. (London) 343:385–405.Google Scholar
  15. Dudek, S. M., and Bear, M. F., 1992, Homosynaptic long-term depression in area CAl of hippocampus and effects of N-methyl-D-aspartate receptor blockade, Proc. Natl. Acad. Sci. USA 89:4363–4367.PubMedCrossRefGoogle Scholar
  16. Dumuis, A., Sebben, M., Haynes, L., Pin, J. P., and Bockaert, J., 1988, NMDA receptors activate the arachidonic acid cascade system in striatal neurons, Nature 336:68–70.PubMedCrossRefGoogle Scholar
  17. Fox, K., and Daw, N. W., 1992, A model for the action of NMDA conductances in the visual cortex, Neural Computation 4:59–83.CrossRefGoogle Scholar
  18. Fox, K., Sato, H., and Daw, N. W., 1990, The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex, J. Neurophysiol. 64:1413–1428.PubMedGoogle Scholar
  19. Frey, U., Huang, Y. Y., and Kandel, E. R., 1993, Effects of cAMP simulate a late stage of LTP in hippocampal CAl neurons, Science 260:1661–1664.PubMedCrossRefGoogle Scholar
  20. Gribkoff, V. K., and Lum-Ragan, J. T., 1992, Evidence for nitric oxide synthase inhibitor-sensitive and insensitive hippocampal synaptic potentiation, J. Neurophysiol. 68:639–642.PubMedGoogle Scholar
  21. Haley, J. E., Wilcox, G. L., and Chapman, P. F., 1992, The role of nitric oxide in hippocampal long-term potentiation, Neuron 8:211–216.PubMedCrossRefGoogle Scholar
  22. Haley, J. E., Malen, P. L., and Chapman, P. F., 1993, Nitric oxide synthase inhibitors block LTP induced by weak but not strong tetanic stimulation, Soc. Neurosci. Abstr. 19:906.Google Scholar
  23. Halpain, S., and Greengard, P., 1990, Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2, Neuron 5:237–246.PubMedCrossRefGoogle Scholar
  24. Kato, N., 1993, Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex, Proc. Natl. Acad. Sci. USA 90:3650–3654.PubMedCrossRefGoogle Scholar
  25. Kauer, J. A., Malenka, R. C, and Nicoll, R. A., 1988, A persistent postsynaptic modification mediates long-term potentiation in the hippocampus, Neuron 1:911–917.PubMedCrossRefGoogle Scholar
  26. Klann, E., Chen, S. J., and Sweatt, J. D., 1991, Persistent protein kinase activation in the maintenance phase of long-term potentiation, J. Biol. Chem. 266:24253–24256.PubMedGoogle Scholar
  27. Komatsu, Y., and Iwakiri, M., 1992, Low-threshold Ca2+ channels mediate induction of long-term potentiation in kitten visual cortex, J. Neurophysiol. 67:401–410.PubMedGoogle Scholar
  28. Komatsu, Y., Fujii, K., Maeda, J., Sakaguchi, H., and Toyama, K., 1988, Long-term potentiation of synaptic transmission in kitten visual cortex, J. Neurophysiol. 59:124–141.PubMedGoogle Scholar
  29. Krug, M., Lossner, B., and Ott, T., 1984, Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats, Brain Res. Bull. 13:39–42.PubMedCrossRefGoogle Scholar
  30. Lisman, J., 1989, A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory, Proc. Natl. Acad. Sci. USA 86:9574–9578.PubMedCrossRefGoogle Scholar
  31. Lisman, J. E., and Harris, K. M., 1993, Quantal analysis and synaptic anatomy—Integrating two views of hippocampal plasticity, Trends Neurosci. 16:141–147.PubMedCrossRefGoogle Scholar
  32. Lovinger, D. M., and Routtenberg, A., 1988, Synapse-specific protein kinase C activation enhances maintenance of long-term potentiation in rat hippocampus, J. Physiol. (London) 400:321–333.Google Scholar
  33. Lynch, G., Larson, J., Kelso, S., Barrioneuvo, G., and Schottler, F., 1983, Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature 305:719–721.PubMedCrossRefGoogle Scholar
  34. Lynch, M. A., Errington, M. L., and Bliss, T. V. P., 1989, Nordihydroguaiaretic acid blocks the synaptic component of long-term potentiation and the associated increases in release of glutamate and arachidonate: An in vivo study in the dentate gyrus of the rat, Neuroscience 30:693–701.PubMedCrossRefGoogle Scholar
  35. Malenka, R. C., Kauer, J. A., Zucker, R. S., and Nicoll, R. A., 1988, Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission, Science 242:81–84.PubMedCrossRefGoogle Scholar
  36. Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., and Waxham, M. N., 1989a, An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation, Nature 340:554–557.PubMedCrossRefGoogle Scholar
  37. Malenka, R. C., Kauer, J. A., Perkel, D. J., and Nicoll, R. A., 1989b, The impact of postsynaptic calcium on synaptic transmission—Its role in long-term potentiation, Trends Neurosci. 12: 444–450.PubMedCrossRefGoogle Scholar
  38. Malinow, R., Schulman, H., and Tsien, R. W., 1989, Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP, Science 245:862–866.PubMedCrossRefGoogle Scholar
  39. Miyakawa, H., Ross, W. N., Jaffe, D., Callaway, J. C, Lasser-Ross, N., Lisman, J. E., and Johnston, D., 1992, Synaptically activated increases in Ca2+ concentration in hippocampal CAl pyramidal cells are primarily due to voltage-gated Ca2+ channels, Neuron 9:1163–1173.PubMedCrossRefGoogle Scholar
  40. Mulkey, R. M., and Malenka, R. C, 1992, Mechanisms underlying induction of homosynaptic long-term depression in area CAl of the hippocampus, Neuron 9:967–975.PubMedCrossRefGoogle Scholar
  41. Mulkey, R. M., Herron, C. E., and Malenka, R. C, 1993, An essential role for protein phosphatases in hippocampal long-term depression, Science 261:1051–1055.PubMedCrossRefGoogle Scholar
  42. Mulkey, R. M., Endo, S., Shenolikar, S., and Malenka, R. C., 1994, Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression, Nature 369: 486–488.PubMedCrossRefGoogle Scholar
  43. Muller, D., Joly, M., and Lynch, G., 1988, Contributions of quisqualate and NMDA receptors to the induction and expression of LTP, Science 242:1694–1697.PubMedCrossRefGoogle Scholar
  44. Musgrave, M. A., Ballyk, B. A., and Goh, J. W., 1993, Coactivation of metabotropic and NMDA receptors is required for LTP induction, Neuroreport 4:171–174.PubMedCrossRefGoogle Scholar
  45. Nakanishi, S., 1992, Molecular diversity of glutamate receptors and implications for brain function, Science 258:597–603.PubMedCrossRefGoogle Scholar
  46. Obenaus, A., Mody, I., and Baimbridge, K. G., 1989, Dantrolene-Na (Dantrium) blocks induction of long-term potentiation in hippocampal slices, Neurosci. Lett. 98:172–178.PubMedCrossRefGoogle Scholar
  47. O’Dell, T. J., Hawkins, R. D., Kandel, E. R., and Arancio, O., 1991a, Tests of the roles of two diffusible substances in long-term potentiation: Evidence for nitric oxide as a possible early retrograde messenger, Proc. Natl. Acad. Sci. USA 88:11285–11289.PubMedCrossRefGoogle Scholar
  48. O’Dell, T. J., Kandel, E. R., and Grant, S. G. N., 1991b, Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors, Nature 353:558–560.PubMedCrossRefGoogle Scholar
  49. Otani, S., Marshall, C. J., Tate, W. P., Goddard, G. V., and Abraham, W. C., 1989, Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization, Neuroscience 28:519–526.PubMedCrossRefGoogle Scholar
  50. Schuman, E. M., and Madison, D. V., 1991, A requirement for the intracellular messenger nitric oxide in long-term potentiation, Science 254:1503–1506.PubMedCrossRefGoogle Scholar
  51. Silva, A. J., Stevens, C. F., Tonegawa, S., and Wang, Y., 1992, Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice, Science 257:201–206.PubMedCrossRefGoogle Scholar
  52. Stanton, P. K., and Sarvey, J. M., 1984, Blockade of long-term potentiation in rat hippocampal CAl region by inhibitors of protein synthesis, J. Neurosci. 4:3080–3088.PubMedGoogle Scholar
  53. Tsumoto, T., and Suda, K., 1979, Cross-depression: An electrophysiological manifestation of binocular competition in the developing visual cortex, Brain Res. 168:190–194.PubMedCrossRefGoogle Scholar
  54. Williams, J. H., Errington, M. L., Lynch, M. A., and Bliss, T. V. P., 1989, Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus, Nature 341:739–742.PubMedCrossRefGoogle Scholar
  55. Williams, J. H., Li, Y. G., Nayak, A., Errington, M. L., Murphy, K. P. S. J., and Bliss, T. V. P., 1993, The suppression of long-term potentiation in rat hippocampus by inhibitors of nitric oxide synthase is temperature and age dependent, Neuron 11:877–884.PubMedCrossRefGoogle Scholar
  56. Zalutsky, R. A., and Nicoll, R. A., 1990, Comparison of two forms of long-term potentiation in single hippocampal neurons, Science 248:1619–1624.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Nigel W. Daw
    • 1
  1. 1.Yale University Medical SchoolNew Haven, ConnecticutUK

Personalised recommendations