Skip to main content

Numerical Data on Viscosity

  • Chapter
Viscosity of Dense Fluids

Abstract

The viscosity of air, considered here as a mixture of 21% oxygen, 78.1% nitrogen and 0.9% argon, is based on the experimental data of Lo et al. [133]. Their correlation was used to produce the recommended values presented on the next page. The values are plotted as isotherms against pressure in Figure 1, and as isobars against temperature in Figure 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Data Sources

  1. Agaev, N.A. and Golubev, I.F., “The Viscosities of Liquid and Gaseous n-Pentane at High Pressures and Different Temperatures,” Gazov. Promst., 8 (5), 45–50, 1963.

    Google Scholar 

  2. Agaev, N.A. and Golubev, I.F., “The Viscosity of n-Hexane in the Liquid and Gaseous State at High Pressures and Different Temperatures,” Dokl. Phys. Chem., 151, 635–40, 1963.

    Google Scholar 

  3. Agaev, N.A. and Golubev, I.F., “The Viscosities of Liquid and Gaseous n-Heptane and n-Octane at High Pressures and Different Temperatures,” Gazov. Promst., 8 (7), 50–3, 1963.

    Google Scholar 

  4. Agaev, N.A. and Yusibova, A.D., “Viscosity of Isobutane at High Pressures,” Foreign Technology Division Rept. FTD-MT-71–1605, 9 pp., 1971. [AD 742 714]

    Google Scholar 

  5. Agaev, N.A. and Yusibova, A.D., “The Viscosity of Isooctane at High Pressures and Various Temperatures,” Gazov. Promst., 46–8, 1966.

    Google Scholar 

  6. Akhundov, T.C., “Viscosity of Ethylbenzene,” Nef t. Gazov. Promst., 10, 46–74, 1973.

    Google Scholar 

  7. Akhundov, T.C., Ismail–Zade, Sh.M., and Tairov, A.D., “Toluene Viscosity at High Pressures and Temperatures,” Foreign Technology Division Rept. FTD–HC–23–54–72, 7 pp., 1972. [AD 743 340]

    Google Scholar 

  8. Andreev, I.I., Tsederberg, V.N., and Popov, V.N., “Experimental Investigation of the Viscosity of Argon,” Teploenergetika, 13(8), 78–81, 1966; English translation: Therm. Eng., 13 (8), 111–6, 1966.

    Google Scholar 

  9. Arnold, E.W., Liou, D.W., and Eldridge, J.W., “Thermodynamic Properties of Isopentane,” J. Chem. Eng. Data, 10 (2), 88–92, 1965.

    Article  Google Scholar 

  10. Babb, S.E. and Scott, G.J., “Rough Viscosities to 10000 Bars,” J. Chem. Phys., 40, 3666–8, 1964.

    Article  ADS  Google Scholar 

  11. Baron, J.D., Roof, J.G., and Wells, F.W., “Viscosity of Nitrogen, Methane, Ethane, and Propane at Elevated Temperature and Pressure,” J. Chem. Eng. Data, 4, 283–8, 1959.

    Article  Google Scholar 

  12. Barua, A.K., Afzal, M., Flynn, G.P., and Ross, J., “Viscosity of Hydrogen, Deuterium, Methane, and Carbon Monoxide From -50° to 150°C Below 200 Atmospheres,” J. Chem. Phys., 41, 374–8, 1964.

    Article  ADS  Google Scholar 

  13. Beattie, J.A., Brierley, J.S., and Barriault, R.J., “The Compressibility of Krypton. I. An Equation of State for Krypton and the Weight of a Liter of Krypton,” J. Chem. Phys., 20, 1613–5, 1952.

    Article  ADS  Google Scholar 

  14. Benning, A.F. and Markwood, W.H., “The Viscosities of Freon Refrigerants,” Refrigerating Engineering, 4, 243–7, 1939.

    Google Scholar 

  15. Bicher, L.B. and Katz, D.L., “Viscosities of the Methane-Propane System,” Ind. Eng. Chem., 35, 754–61, 1943.

    Google Scholar 

  16. Biles, M.B. and Putnam, J.A., “Use of a Consolidated Porous Medium for Measurement of Flow Rate and Viscosity of Gases at Elevated Pressures and Temperatures,” Natl. Advisory Comm. Aeron. Tech. Note, NACA-TN-2783, 1952.

    Google Scholar 

  17. Boon, J.P., Legros, J.C., and Thomaes, G., “On the Principle of Corresponding States for the Viscosity of Simple Liquids,” Physica, 33, 547–57, 1967.

    Article  ADS  Google Scholar 

  18. Boon, J.P. and Thomaes, G., “The Viscosity of Liquefied Gases,” Physica, 29, 208–14, 1963.

    Article  Google Scholar 

  19. Braune, H. and Linke, R., “The Viscosity of Gases and Vapors. III. Influence of the Dipole Moment on the Magnitude of the Sutherland Constant,” Z. Phys. Chem. (Leipzig), 148A, 195–215, 1930.

    Google Scholar 

  20. Brazier, D.W. and Freeman, G.R., “The Effects of Pressure on the Density, Dielectric Constant, and Viscosity of Several Hydrocarbons and Other Organic Liquids,” Can. J. Chem., 47 (6), 893–9, 1969.

    Google Scholar 

  21. Bridgman, P.W., “The Effect of Pressure on the Viscosity of Forty-Three Am. Acad. Arts Sci., 61, 57–99, 1926.

    Article  Google Scholar 

  22. Bridgman, P.W., “Viscosities to 30000 Kg/cm2,” Proc. Am. Acad. Arts Sci.

    Google Scholar 

  23. Bridgman, P.W., “The Physics of High Pressures,” Bell and Sons, London

    Google Scholar 

  24. Carmichael, L.T., Berry, V.M. and Sage, B.H., “Viscosity of Hydrocarbon Eng. Data, 9, 411–5, 1964.

    Article  Google Scholar 

  25. Carmichael L.T. Berry V., and Sage, B.H., “Viscosity of Hydrocarbons. Eng. Data, 10, 57–61, 1965.

    Article  Google Scholar 

  26. Carmichael, L.T., Berry, V.M., and Sage, B.H., “Viscosity of Hydrocarbons. n-Decane,” J. Chem. Eng. Data, 14 (1), 27–31, 1969.

    Article  Google Scholar 

  27. Carmichael, L.T., Reamer, H.H., and Sage, B.H., “Viscosity of Ammonia at High Pressures,” J. Chem. Eng. Data, 8, 400–4, 1963.

    Article  Google Scholar 

  28. Carmichael, L.T. and Sage, B.H., “Viscosity of Liquid Ammonia at High Pressures,” Ind. Eng. Chem., 44, 2728–32, 1952.

    Google Scholar 

  29. Carmichael, L.T. and Sage, B.H., “Viscosity of Ethane at High Pressures,” J. Chem. Eng. Data, 8, 94–8, 1963.

    Article  Google Scholar 

  30. Carmichael, L.T. and Sage, B.H., “Viscosity of Hydrocarbons. n-Butane,” J. Chem. Eng. Data, 8, 612–6, 1963.

    Article  Google Scholar 

  31. Carr, N.L., “Viscosity of Gas Mixtures at High Pressures,” Illinois Institute of Technology, Chicago, IL, Ph.D. Dissertation, 1952.

    Google Scholar 

  32. Chaikovskii, V., Geller, V.Z., and Ivanchenko, S.I., “Viscosity of Dichlorodifluoromethane,” Neft. Gazov. Promst., 7, 111–2, 1973.

    Google Scholar 

  33. Chierici, G.L. and Paratella, A., “Viscosity Measurements on Carbon Monoxide, Nitrogen up to 900 Atmospheres and Correlation to Mass Diffusion,” AIChE J., 15 (5), 786–90, 1969.

    Article  Google Scholar 

  34. Collings, A.F. and McLaughlin, E., “Torsional Crystal Technique for the Measurement of Viscosities of Liquids at High Pressure,” Trans. Faraday Soc., 67, 340–52, 1971.

    Article  Google Scholar 

  35. Comings, E.W. and Egly, R.S., “Viscosity of Ethylene and of Carbon Dioxide Under Pressure,” Ind. Eng. Chem., 33, 1224–9, 1941.

    Google Scholar 

  36. Comings, E.W., Mayland, B.J., and Egly, R.S., “The Viscosity of Gases at High Pressures,” Univ. Illinois, Eng. Expt. Sta. Bull., Series No. (354), 68 pp., 1944.

    Google Scholar 

  37. D’Ans Lax, Pocketbook for Chemists and Physicists, Volume I, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  38. DeBock, A., Grevendonk, W., and Awouters, H., “Pressure Dependence of the Viscosity of Liquid Argon and Liquid Oxygen, Measured by Means of a Torsionally Vibrating Quartz Crystal,” Physica, 34, 49–52, 1967.

    Article  ADS  Google Scholar 

  39. DeBock, A., Grevendonk, W., and Herreman, W., “Shear Viscosity of Liquid Argon,” Physica, 37, 227–32, 1967.

    Article  ADS  Google Scholar 

  40. Diller, D.E., “Measurements of the Viscosity of Parahydrogen,” J. Chem. Phys., 42, 2089–100, 1965.

    Article  ADS  Google Scholar 

  41. Kestin, J., and Oguchi, K., “Viscosity of Three Binary Gaseous Mixtures,” J. 46, 4758–64, 1967.

    Google Scholar 

  42. Dolan, J.P., Starling, K.E., Lee, A.L., Eakin, B.E., and Ellington, R.T., “Liquid Gas and Dense Fluid Viscosity of -Butane,” J. Chem. Eng. Data, 8, 396–9, 1963.

    Article  Google Scholar 

  43. Eakin, B.E. and Ellington, R.T., “Improved High Pressure Capillary Tube Viscosimeter,” Petroleum Trans. (AIME), 216, 85–91, 1959.

    Google Scholar 

  44. Eakin, B.E., Starling, K.E., Dolan, J.P., and Ellington, R.T., “Liquid Gas, and Dense Fluid Viscosity of Ethane,” J. Chem. Eng. Data, 7, 33–6, 1962.

    Article  Google Scholar 

  45. Eisele, E.H., Fontaine, W.E., and Leidenfrost, W., “Measurement of Kinematic Viscosity of the Liquid Phase of a Refrigerant Close to Boiling, at Temperatures and Pressures Other than Ambient, Using a Commercial, Capillary Tube Viscosimeter,” 12th Proc. Int. Congr. Refrig., 2, 553–60, 1969.

    Google Scholar 

  46. Elverum, G.W. and Doescher, R.N., “Physical Properties of Liquid Fluorine,” J. Chem. Phys., 20, 1834–6, 1952.

    Article  ADS  Google Scholar 

  47. Felsing, W.A. and Watson, G.M., “The Compressibility of Liquid n-Octane,” J. Am. Chem. Soc., 64 (8), 1822–3, 1942.

    Article  Google Scholar 

  48. Filippova, G.P. and Ishkin, I.P., “The Viscosity of Air, Nitrogen, and Argon at Low Temperatures and Pressures to 150 Atmospheres,” Inzh.-Fiz. Zh., 4 (3), 105–9, 1961.

    Google Scholar 

  49. Flynn, G.P., Hanks, R.V., Lemaire, N.A., and Ross, J., “Viscosity of Nitrogen, Helium, Neon, and Argon From -78.5° to 100°C Below 200 Atmospheres,” J. Chem. Phys., 38, 154–62, 1963.

    Article  ADS  Google Scholar 

  50. Förster, S., “Viscosity Measurements in Liquid Neon, Argon, and Nitrogen,” Cryogenics, 176–7, 1963.

    Google Scholar 

  51. Gallant, R.W., “Physical Properties of Hydrocarbons, Part 20–Halogenated Methanes,” Hydrocarbon Process. Pet. Refiner, 47 (1), 135–42, 1968.

    Google Scholar 

  52. Geller, V.Z., Ivanchenko, S.I., and Peredrii, V.G., “Coefficients of Dynamic Viscosity and Thermal Conductivity of Difluorochloromethane,” Neft. Gazov. Promst., 16(8), 62, 61–5, 1973.

    Google Scholar 

  53. Gibbons, R.M., “The Equation of State for Neon Between 27 and 70 K,” Cryogenics, 9 (8), 25160, 1969.

    Google Scholar 

  54. Giddings, J.G., Kao, J.T.F., and Kobayashi, R., “Development of a High-Pressure Capillary Tube Viscometer and Its Application to Methane, Propane, and Their Mixtures in the Gaseous and Liquid Regions,” J. Chem. Phys., 45, 578–86, 1966.

    Article  ADS  Google Scholar 

  55. Glaser, F. and Gebhardt, F., “Measurements of the Viscosity of Gases and Vapors at High Pressures and High Temperatures,” Chem. Ing. Techn., 31, 743–5, 1959.

    Article  Google Scholar 

  56. Goldman, K., “Viscosity of N2 at Low Temperatures and High Pressures,” Physica, 29, 510–5, 1963.

    Google Scholar 

  57. Golubev, I.F., Viscosity of Gases and Gas Mixtures, a Handbook, Israel Program for Scientific Translations, Jerusalem, 1970.

    Google Scholar 

  58. Golubev, I.F. and Gnezdilov, H.E., “Viscosity of Helium and. Helium-Hydrogen-Mixtures at Temperatures Between 0 and 250°C and Pressures Up to 500 at,” Gazov. Promst., 10 (12), 38–42, 1965.

    Google Scholar 

  59. Golubev, I. and Kurin, V.I., “Measuring the Viscosity of Gases at Pressures up to 4000 Kgf/cm2 and Different Temperatures,” Therm. Eng., 8, 121–5, 1974.

    Google Scholar 

  60. Golubev, I.F. and Shepeleva, R.I., “Viscosity of Hydrogen at Low Temperatures and High Pressures,” Gazov. Promst., 11 (4), 54–8, 1966.

    MathSciNet  Google Scholar 

  61. Gonikberg, M.G. and Vereshchagin, L.E., “Measurements of Ethylene Viscosity at Pressures up to 1000 Atm. by the Oscillating Disc Method,” Dokl. Akad. Nauk, 55 (9), 801–4, 1947.

    Google Scholar 

  62. Gonzalez, M.H., Bukacek, R.F., and Lee, A.L., “The Viscosity of Methane,” Soc. Petrol. Eng.J., 7, 75–9, 1967.

    Google Scholar 

  63. Gonzalez, M.H. and Lee, A.L., “Viscosity of Isobutane,” J. Chem. Eng. Data, 11, 357–9, 1966.

    Article  Google Scholar 

  64. Goring, G.E. and Eagan, D.P., “An Investigation of the Viscosity of Dry Air at Elevated Pressures and Temperatures Using a Steady-Flow Capillary Vi.scosimeter,” Can. J. Chem. Eng., 49, 25–31, 1971.

    Google Scholar 

  65. Gracki, J.A., Flynn, G.P., and Ross, J., “Viscosity of Nitrogen, Helium, Hydrogen, and Argon from -100 to 25°C up to 150–250 Atm,” J. Chem. Phys., 51, 3856–63, 1969.

    Article  ADS  Google Scholar 

  66. Gracki, J.A., Flynn, G.P., and Ross, J., “Viscosity of Nitrogen, Helium, Hydrogen, and Argon from -100 to 25°C up to 150–250 Atm,” Purdue Univ. W. Lafayette, Indiana, 28 pp., 1969. [N69–39873] [AD 690 933]

    Google Scholar 

  67. Grevendonk, W., Herreman, W., and DeBock, A., “Measurement on the Viscosity of Liquid Nitrogen,’ Physica, 46, 600–4, 1970.

    Article  ADS  Google Scholar 

  68. Grevendonk, K.W., Herreman, W., DePesserocy, W., and DeBock, A., “On the Shear Viscosity of Liquid Oxygen,” Physica, 40, 207–12, 1968.

    Article  ADS  Google Scholar 

  69. Groenier, W.S. and Thodos, G., “Pressure-Volume-Temperature Behavior of Ammonia in the Gaseous and Liquid States,” J. Chem. Eng. Data, 5, 285–8, 1960.

    Article  Google Scholar 

  70. Guseinov, K.D. and Kadscharov, V.T., “The Viscosity of Liquid Propylacetate and Butylacetate at Various Temperatures and Pressures,” Nef. Gazov. Promet., 4, 68–78, 1975.

    Google Scholar 

  71. Guseinov, S.O., Naziev, Ya.M., and Akhmedov, A.K., “Viscosity of Cyclohexane at High Pressures,” Neft. Gazov. Promst., 2, 65–7, 1973.

    Google Scholar 

  72. Guseinov, S.O. and Naziev, Ya.M., “The Viscosities of Liquid n-Undecane and n-Heptadecane at High Pressures,” Nef t. Gazov. Promst., 12, 61–3, 19 73.

    Google Scholar 

  73. Guseinov, S.O., Naziev, Ya.M., and Ahmedov, A.K., “Viscosity of Liquid Methylcyclohexane and Ethylcyclohexane at High Pressures,” Neft. Gazov. Promst., 1, 73–5, 1973.

    Google Scholar 

  74. Haepp, H.J., “Measurement of the Viscosity of Carbon Dioxide and Propylene,” Ruhr-Univ. Bochum ( B.R.D. ), Dissertation, 1975.

    Google Scholar 

  75. Haepp, H.J., “Measurement of the Viscosity of Carbon Dioxide and Propylene,” Waerme Stoffuebertrag., 6, 281–90, 1976.

    Article  ADS  Google Scholar 

  76. Hanley, H.J.M., McCarty, R.D., and Haynes, W.M., “The Viscosity and Thermal Conductivity Coefficients for Dense Gaseous and Liquid Argon, Krypton, Xenon, Nitrogen, and Oxygen,” J. Phys. Chem. Ref. Data, 3 (4), 979–1018, 1974.

    Article  ADS  Google Scholar 

  77. Haynes, W.M., “Viscosity of Gaseous and Liquid Argon,” Physica, 67, 440–70, 1973.

    Article  ADS  Google Scholar 

  78. Haynes, W.M., “Measurements of the Viscosity of Compressed Gaseous and Liquid Fluorine,” Physica, 76 (1), 1–20, 1974.

    Article  ADS  Google Scholar 

  79. Heiks, J.R. and Orban, E., “Liquid Viscosities at Elevated Temperatures and Pressures: Viscosity of Benzene from 90° to Its Critical Temperature,” J. Phys. Chem., 60, 1025–7, 1956.

    Article  Google Scholar 

  80. Hellemans, J., Zink, H., and Van Paemel, 0., “The Viscosity of Liquid Nitrogen and Liquid Oxygen Along Isotherms as a Function of Pressure,” Physica, 47, 45–57, 1970.

    Article  ADS  Google Scholar 

  81. Hellemans, J., Zink, H., and Van Paemel, O., “The Viscosity of Liquid Argon and Liquid Methane Along Isotherms as a Function of Pressure,” Physica, 46, 395–410, 1970.

    Article  ADS  Google Scholar 

  82. Herreman, W. and Grevendonk, W., “An Experimental Study on the Shear Viscosity of Liquid Neon,” Cryogenics, 14 (7), 395–8, 1974.

    Article  Google Scholar 

  83. Herreman, W., Grevendonk, W., and DeBock, A., “Shear Viscosity Measurements of Liquid Carbon Dioxide,” J. Chem. Phys., 53, 185–9, 1970.

    Article  ADS  Google Scholar 

  84. Herreman, W., Lattenist, A., Grevendonk, W., and DeBock, A., “Measurements on the Viscosity of Carbon Dioxide,” Physica, 52, 489–92, 1971.

    Article  ADS  Google Scholar 

  85. Huang, E.T.S., Swift, G.W., and Kurata, F., “Viscosities of Methane and Propane at Low Temperatures and High Pressures,” AIChE J., 12, 932–6, 1966.

    Article  Google Scholar 

  86. Hubbard, R.M. and Brown, G.G., “Viscosity of n-Pentane,” Ind. Eng. Chem., 35, 1276–80, 1943

    Google Scholar 

  87. Isakova, N.P. and Oshueva, L.A., “Viscosity of Liquid Methanol,” Russ. J. Phys. Chem., 40 (5), 607, 1966.

    Google Scholar 

  88. Van Itterbeek, A., Hellemans, J., Zink, H., and Van Cauteren, M., “Viscosity of Liquefied Gases at Pressures Between 1 and 100 Atmosphere,” Physica, 32, 2171–2, 1966.

    Article  Google Scholar 

  89. Ivanchenko, S.I., “Viscosity of Trifluorotrichloroethane,” Neft. Gazov. Promst., 15(7), 82 pp., 1972.

    Google Scholar 

  90. Iwasaki, H., “Measurement of Viscosities of Gases at High Pressure,” Sci. Rep., Tohoku Imp. Univ., 3A, 247–57, 1951.

    Google Scholar 

  91. Iwasaki, H., Kestin, J., and Nagashima, A., “Viscosity of Argon-Ammonia Mixtures,” J. Chem. Phys., 40, 2988–95, 1964.

    Article  ADS  Google Scholar 

  92. Iwasaki, H. and Takahashi, M., “Viscosity of Methane,” J. Chem. Soc., Japan, Ind. Chem. Sect., 62, 918–21, 1959.

    Google Scholar 

  93. Iwasaki, H. and Takahashi, M., “Studies on the Transport Properties of Fluids at High Pressure. I. The Viscosity of Ammonia,” Rev. Phys. Chem. Japan, 38, 18–27, 1968.

    Google Scholar 

  94. Jobling, A. and Lawrence, A.S.C., “Viscosities of Liquids at Constant Volume,” Proc. R. Soc. London, 206A, 257–74, 1951.

    Article  ADS  Google Scholar 

  95. Kamien, C.Z., “The Viscosity of Several Fluorinated Hydrocarbon Compounds in the Vapor Phase,” Purdue Univ., Lafayette, Indiana, M.S. Thesis, 98 pp., 1956.

    Google Scholar 

  96. Kamien, C.Z. and Witzell, O.W., “Effect of Pressure and Temperature on the Viscosity of Refrigerants,” ASHRAE J., 65, 663–74, 1959.

    Google Scholar 

  97. Kao, I.T.F. and Kobayashi, R., “Viscosity of Helium and Nitrogen and Their Mixtures at Low Temperatures and Elevated Pressures,” J. Chem. Phys., 47 (8), 2836–49, 1967.

    Article  ADS  Google Scholar 

  98. Karbanov, E.M. and Geller, V.Z., “Viscosity of Trifluorobromomethane,” Neft. Gazov. Promst., 11, 22–104, 1974.

    Google Scholar 

  99. Kellström, G., “Viscosity of Air at Pressures 1–30 Kg/cm2,” Ark. Mat., Astron. Phys., 27A, 1–15, 1941.

    Google Scholar 

  100. Kennedy, G.C., “Pressure-Volume-Temperature Relations in CO2 at Elevated Temperatures and Pressures,” Am. J. Sci., 252, 225–35, 1954.

    Article  Google Scholar 

  101. Keramídi, A.S. and Rastorguev, Yu.L., “Viscosity of Hydrocarbons. n-Nonane,” Neft. Gazov. Promst., 15 (9), 65–8, 1972.

    Google Scholar 

  102. Keramidi, A.S. and Rastorguev, Yu.L., “Viscosity of n-Dodecane at High Pressures,” Neft. Gazov. Promst., 13 (10), 108–14, 1970.

    Google Scholar 

  103. Kestin, J. and Leidenfrost, W., “Thermodynamic and Transport Properties of Gases, Liquids and Solids,” Symposium, Lafayette, Indiana, 1959 (McGraw-Hill Book Co., Inc., New York, NY, 1959 ).

    Google Scholar 

  104. Kestin, J. and Leidenfrost, W., “The Viscosity of Helium,” Physica, 25, 537–55, 1959.

    Article  ADS  Google Scholar 

  105. Kestin, J. and Leidenfrost, W., “An Absolute Determination of the Viscosity of Eleven Gases Over a Range of Pressures,” Physica, 25, 1033–62, 1959.

    Article  ADS  Google Scholar 

  106. Kestin, J., Paykoc, E., and Sengers, J.V., “On the Density Expansion for Viscosity in Gases,” Physica, 54, 1–19, 1971.

    Article  ADS  Google Scholar 

  107. Kestin, J. and Pilarczyk, K. “Measurement of the Viscosity of Five Gases at Elevated Pressures by the Oscillating-Disk Method,” Trans. ASME, 76, 987–99, 1954.

    Google Scholar 

  108. Kestin, J. and Wang, H.E., “The Viscosity of Five Gases: A. Re-Evaluation,” Trans. ASME, 80, 11–7, 1958.

    Google Scholar 

  109. Kestin, J. and Whitelaw, J.H., “A Relative Determination o f the Viscosity of Several Gases by the Oscillating Disk Method,” Physica, 29, 335–56, 1963

    Article  Google Scholar 

  110. Kestin, J. and Whitelaw, J.H., “The Viscosity of Dry and Humid Air,” Int. J. Heat Mass Transfer, 7, 1245–55, 1964.

    Article  Google Scholar 

  111. Kestin, J., Whitelaw, J.H., and Zien, T.F., “The Viscosity of Carbon Dioxide in the Neighbourhood of the Critical Point,” Physica, 30, 161–81, 1964.

    Article  ADS  Google Scholar 

  112. Kestin, J. and Yata, J., “Viscosity and Diffusion Coeffici ent of Six Binary Mixtures,” J. Chem. Phys., 49, 4780–91, 1968.

    Article  ADS  Google Scholar 

  113. Khalilov, Kh., “Viscosity of Liquid and Saturated Vapors a t High Temperatures and Pressures,” Zhetf. T., 9 (3), 335–45, 1939.

    Google Scholar 

  114. Kiyama, R. and Makita, T., “An Improved Viscosimeter for Compressed Gases and the Viscosity of Oxygen,” Rev. Phys. Chem. Japan, 26 (2), 70–4, 1956.

    Google Scholar 

  115. Kiyama, R. and Makita, T., “A New Simple Viscometer for Compressed Gases and Viscosity of Carbon Dioxide,” Rev. Phys. Chem. Japan, 21, 63–8, 1951.

    Google Scholar 

  116. Kiyama, R. and Makita, T., “The Viscosity of Carbon Dioxide, Ammonia, Acetylene, Argon and Oxygen Under High Pressures,” Rev. Phys. Chem. Japan, 22, 49–58, 1952.

    Google Scholar 

  117. Kletskii, A.V., Thermophysical Properties of Freon-22, Israel Program for Scientific Translations, Jerusalem, 1971. [TT-70–50178]

    Google Scholar 

  118. Kor, S.K., Singh, B.K., and Rai, G., “Pressure Dependence of Ultrasonic Absorption and Compressional Viscosity Due to Structural Rearrangement in Hexane and Toluene,” Nuovo Cimento Soc. Ital. Fis., 12B (2), 205–14, 1972.

    Google Scholar 

  119. Kozlov, Yu.V., Yakovlev, V.F., and Malyavin, I.G., “Viscosity of Liquids at Constant Density,” Russ. J. Phys. Chem., 40, 1265–6, 1966.

    Google Scholar 

  120. Kuloor, N.R., Newitt, D.M., and Bateman, J.S., “Thermodynamic Functions of Gases,” Vol. 2, Butterworths, London, 1962.

    Google Scholar 

  121. Kurin, V.I. and Golubev, I.F., “The Viscosity of Argon, Air and Carbon Dioxide at Pressures up to 4000 kgf/cm2 and at Different Temperatures,” Teploenergetika, 21(11), 84–5, 1974; English translation: Therm. Eng., 21 (11), 125–7, 1974.

    Google Scholar 

  122. Kuss, E., “High-Pressure Experiments II: The Viscosity of Compressed Gases,” Z. Angew. Phys., 4, 203–7, 1952.

    Google Scholar 

  123. Kuss, E., “Viscosity of Compressed Liquids,” Z. Angew. Phys., 7, 372–8, 1955.

    Google Scholar 

  124. Kuss, E. and Pollmann, P., “Viscosity Pressure Dependence and Degree of Branching of Liquid Alkanes,” Z. Phys. Chem. (Frankfurt am Main), 68 (3–6), 205–27, 1969.

    Google Scholar 

  125. Landolt-Bornstein, Pyrometric Experimental Technique for the Thermodynamic Properties of Homogeneous Materials, Volume IV, Part 4a, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  126. Landolt-Bornstein, Numerical Values and Functions, Transport phenomena I, Volume II, Part 5a, Springer-Verlag, Berlin, 1969.

    Google Scholar 

  127. Landolt-Bornstein, Numerical Values and Functions, Volume II, Part 2a, Springer-Verlag, 1960.

    Google Scholar 

  128. Landolt-Bornstein, Mechanical-Thermal Quantities of State, Volume II, Part 1, Springer-Verlag, Berlin, 1971.

    Google Scholar 

  129. Latto, B. and Saunders, M.W., “Viscosity of Nitrogen Gas at Low Temperatures up to High Pressures: A New Appraisal,” Can. J. Chem. Eng., 50 (3), 765–70, 1972.

    Google Scholar 

  130. Latto, B. and Saunders, M.W., “Absolute Viscosity of Air Down to Cryogenic Temperatures and up to High Pressures,” J. M.ch. Eng. Sci., 15 (4), 266–70, 1973.

    Google Scholar 

  131. Lee, A.L. and Ellington, R.T., “Viscosity of n-Pentane,” J. Chem. Eng. Data, 10, 101–4, 1965.

    Article  Google Scholar 

  132. Lee, A.L. and Ellington, R.T., “Viscosity of n-Decane in the Liquid Phase,” J. Chem. Eng. Data, 10 (4), 346–8, 1965.

    Article  Google Scholar 

  133. Lo, H.Y., Carroll, D.L., and Stiel, L.I., “Viscosity of Gaseous Air at Moderate and High Pressures,” J. Chem. Eng. Data, 11, 540–4, 1966.

    Article  Google Scholar 

  134. Lowry, B.A., Rice, S.A., and Gray, P., “On the Kinetic Theory of Dense Fluids. XVII. The Shear Viscosity,” J. Chem. Phys., 40, 3673–83, 1964.

    Article  ADS  Google Scholar 

  135. Maitland, G.C. and Smith, E.B., “Critical Reassessment of Viscosities of 11 Common Gases,” J. Chem. E.g. Data, 177, 150–6, 1972.

    Article  Google Scholar 

  136. Makavetskas, R.A., Popov, V.N., and Tsederberg, N.V., “Experimental Study of the Viscosity of Helium and Nitrogen,” Teplofiz. Vys. Temp., 1 (2), 191–7, 1963.

    Google Scholar 

  137. Makita, T., “The Viscosity of Freons Under Pressure,” Rev. Phys. Chem., Japan, 24, 74–80, 1954.

    Google Scholar 

  138. Makita, T., “The Viscosity of Gases Under High Pressure,” Mem. Fac. Ind. Arts., Kyoto Tech. Univ., Sci. and Techn., 4, 19–35, 1955.

    Google Scholar 

  139. Makita, T., “The Viscosity of Argon, Nitrogen and Air at Pressures up to 800 kg/cm2,” Rev. Phys. Chem., Japan, 16–21, 1957.

    Google Scholar 

  140. Mamedov, A.M., Akhundov, T.S., Ismail-Zade, Neft. Gazov. Promst., 14 (2), 74–6, 1971.

    Google Scholar 

  141. Martin, G., Lazarre, F., Salvinien, J., and Study of Corrosive Gases Under Pressure,” J Viallet, P., “Viscometer Measurements in the. Chem. Phys., 62 (6), 637–42, 1965.

    Google Scholar 

  142. Mason, S.G. and Maass, O., “Measurement of Can. J. Res., 18B, 128–37, 1940.

    Google Scholar 

  143. Maxwell, J.B., Data Book on Hydrocarbons, D. van Nostrand Company, Inc., Princeton, New Jersey, 1968.

    Google Scholar 

  144. McCarty, R.D., Stewart, R.B., and Timmerhaus, K.D., “p-p-T Values for Neon From 27 to 300 K for Pressures to 200 atm Using Corresponding States Theory,” NBS Report No. 8726, 1965.

    Google Scholar 

  145. Michels, A., Botzen, A., and Schuurman, W., “The Viscosity of Argon at Pressures up to 2000 Atmospheres,” Physica, 20, 1141–8, 1954.

    Article  ADS  Google Scholar 

  146. Michels, A., Botzen, A., and Schuurman, W., “The Viscosity of Carbon Dioxide Between 0°C and 75 °C and at Pressures up to 2000 Atmospheres,” Physica, 23, 95–102, 1957.

    Article  ADS  Google Scholar 

  147. Michels, A. and Gibson, R.0., “The Measurement of the Viscosity of Gases and High Pressures The Viscosity of Nitrogen to 1000 Atms,” Proc. R. Soc. London, 134A, 288–307, 1932.

    Article  ADS  Google Scholar 

  148. Michels, A., Levelt, J.M., and DeGraaff, W., “Compressibility Isotherms of Argon at Temperatures Between -25°C and -155°C, and at Densities up to 640 Amagat (Pressures up to 1050 Atmospheres),” Physica, 24, 659–71, 1958.

    Article  ADS  Google Scholar 

  149. Michels, A. and Michels, C., “Isotherms of CO2 Between 0° and 150° and Pressures From 16 to 250 Atm (Amagat Densities 18–206),” Proc. R. Soc. London, 153A, 201–14, 1935.

    Article  ADS  Google Scholar 

  150. Michels, A., Michels, C., and Wouters, M., “Isotherms of CO2 Between 70 and 3000 Atms (Amagat Densities Between 200 and 600),” Proc. R. Soc. London, 153A, 214–24, 1935.

    Article  ADS  Google Scholar 

  151. Michels, A., Schipper, A.G.J., and Rintoul, W.H., “The Viscosity of Hydrogen and Deuterium at Pressures up to 200 Atm,” Physica, 19, 1011–24, 1953.

    Article  ADS  Google Scholar 

  152. Michels, A., Wassenaar, T., and Louwerse, P., “Isotherms of Xenon at Temperatures Between 0°C and 150°C and at Densities up to 515 Amagats (Pressures up to 2800 Atms),” Physica, 20, 99–106, 1954.

    Article  ADS  Google Scholar 

  153. Moulton, R.W. and Beuschlein, W.L., “A Study of the Flow of Air in Tubes in the Pressure Range 1 to 300 Atms,” Trans. AIChE J., 36, 113–33, 1940.

    Google Scholar 

  154. Naldrett, S. N. and Maass, 0., “The Viscosity of Carbon Dioxide in the Critical Region,” Can. J. Res., 18B, 322–32, 1940.

    Google Scholar 

  155. Nasini, A.G. and Pastonesi, G., “Viscosity of Air up to 200 atm,” Gazz. Chin. Ital., 63, 821–32, 1933.

    Google Scholar 

  156. Naziev, Ya.M., Guseinov, S.O., and Akhmedov, A.K., “Experimental Investigation into the Viscosity of Certain Hydrocarbons at Different Pressures and Temperatures,” Neft. Gazov. Promst., 15 (6), 65–8, 1972.

    Google Scholar 

  157. Naziev, Ya.M., Schuchwerdyew, A.N., and Guseinov, S.O., “Investigation of the Dynamic Viscosity of 1-Heptane and 1-Octene at High Pressures,” Chem. Technol. Fuels Oils (Eng. Transl.), 28 (12), 736–8, 1976.

    Google Scholar 

  158. Neduzhii, I.A. and Khmara, Yu.I., “Experimental Investigation of the Viscosity of Gaseous Ethylene and Propylene,” in Thermophysical Properties of Gases and Liquids, 153–7, 1970. [TT-69–55091]

    Google Scholar 

  159. Parisot, P.E. and Johnson, E.F., “Liquid Viscosity Above trie Normal Boiling Point,” J. Chem. E.g. Data, 6, 263–7, 1961.

    Article  Google Scholar 

  160. Pavlovich, N.V. and Timrot, D.L., “Experimental Investigation of the Viscosity of Methane,” Teploenergetika, 5 (8), p. 61, 1958.

    Google Scholar 

  161. Phillips, P., “The Viscosity of Carbon Dioxide,” Proc. R. Soc. London, 87A, 48–61, 1912.

    Article  ADS  Google Scholar 

  162. Phillips, T.W. and Murphy, K.P., “Liwuid Viscosity of Halocarbons,” J. Chem. Eng. Data, 15 (2), 304–7, 1970.

    Article  Google Scholar 

  163. Rastorguev, Yu.L. and Keramidi, A.S., “Experimental Study of the Viscosity of n-Undecane Under High Pressures,” Neft Gazov. Promst., 14 (3), 59–63, 1971.

    Google Scholar 

  164. Rastorguev, Yu.L. and Keramidi, A.S., “Viscosity of Hydrocarbons. n-Decane,” Nef t. Gazov. Promst., 14 (5), 59–62, 1971.

    Google Scholar 

  165. Reamer, H.H., Cokelet, G., and Sage, B.H., “Viscosity of Fluids at High Pressures,” Analyt. Chem., 31, 1422–8, 1959.

    Google Scholar 

  166. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, Third Edition, McGraw-Hill, 1977.

    Google Scholar 

  167. Reynes, E.G., “The Viscosity of Gases at High Pressures,” Northwestern University, Evanston, Illinois, Ph.D. Thesis, 84 pp., 1964. [Univ. Microfilms Publ. No. 64–12331]

    Google Scholar 

  168. Reynes, E.G. and Thodos, G., “Viscosity of Helium, Neon and Nitrogen in the Dense Gaseous Region,” J. Chem. Eng. Data, 11 (2), 137–40, 1966.

    Article  Google Scholar 

  169. Reynes, E.G. and Thodos, G., “The Viscosity of Argon, Krypton, and Xenon in the Dense Gaseous Region,” Physica, 30, 1529–42, 1964.

    Article  ADS  Google Scholar 

  170. Robinson, D.W., “The Viscosity of Argon, Helium and Nitrogen at Low Temperatures and High Pressures,” Bulletin IIF/IIR Annexe 3, 329–32, 1955.

    Google Scholar 

  171. Ross, J.F. and Brown, G.M., “Viscosities of Gases at High Pressures,” Ind. Eng. Chem., 49, 2026–33, 1957.

    Google Scholar 

  172. Rudenko, N.S. and Shubnikov, L.V., “The Viscosity of Liquid Nitrogen, Carbon Monoxide, Argon and Oxygen as a Function of Temperature,” Phys. Z. Sowjetunion, 6, 470–7, 1934; English translation: NASA Technical Translation, NASA–TT–F–11–868, 1–5, 1968. [N68–31–285]

    Google Scholar 

  173. Rudenko, N.S. and Slyusar, V.P., “Viscosity of Hydrogen at Constant Density Over the Temperature Range 16.6–300 K,” Ukr. Phys. J., 13 (6), 656–9, 1968.

    Google Scholar 

  174. Sage, B.H. and Lacey, W.N., “Effect of Pressure Upon Viscosity of Methane and Two Natural Gases,” Trans. Am. Inst. Min. Metall. Eng., 127, 118–34, 1938.

    Google Scholar 

  175. Sage, B.H. and Lacey, W.N., “Viscosity of Hydrocarbon Solutions, Viscosity of Liquid and Gaseous Propane,” Ind. Eng. Chem., 30, 829–34, 1938.

    Google Scholar 

  176. Sage, B.H., Yale, W.D., and Lacey, W.N., “Effect of Pressure on Viscosity of n-Butane and Isobutane,” Ind. Eng. Chem., 31, 223–6, 1939.

    Google Scholar 

  177. Sautter, P., “Measurement of the Integral Joule-Thomson Effect of the Refrigerant R12(CF2C12), and the Calculation of the Thermal and Caloric Quantities of State,” University of Stuttgart, Dissertation, 1977.

    Google Scholar 

  178. Schr3er, E. and Becker, G., “Investigations Above the Critical State. V. Contribution to the Knowledge of Viscosity in the Critical State,” Z. Phys. Chem., 173A, 178–97, 1935.

    Google Scholar 

  179. Shepeleva, R.I. and Golubev, I.F., “Experimental Measurements of Nitrogen Viscosity at Temperatures of 82 to 276.2 K and Pressures of 1 to 506 x 105 N/m2,” Foreign Technology Division, Air Force Systems Command, U.S. Air Force.

    Google Scholar 

  180. Shimotake, H. and Thodos, G., “The Viscosity of Ammonia: Experimental Measurements for the Dense Gaseous Phase and a Reduced State Correlation for the Gaseous and Liquid Regions,” AIChE J., 9, 68–72, 1963.

    Article  Google Scholar 

  181. Slyusar, V.P., Rudenko, N.S., and Tretyakov, V.M., “Experimental Study of Elementary Substance Viscosity Along the Saturation Line and Under Pressure,” Ukr. Fiz. Zh., 17(2), 8, 1249–55, 1972.

    Google Scholar 

  182. Smith, A.S. and Brown, G.G., “Correlating Fluid Viscosity,” Ind. Eng. Chem., 35, 705–11, 1943.

    Google Scholar 

  183. Stakelbeck, H., “The Viscosity of Various Freezing Mixtures (Refrigerants),” Z. Ges. Kalteind., 40, 33–40, 1933.

    Google Scholar 

  184. Starling, K.E., Eakin, B.E., Dolan, J.P., and Ellington, R.T., “Critical Region Viscosity Behaviour of Ethane, Propane and n-Butane,” Progress Int. R.s. Thermodyn. Transport Prop., 2nd ASME Symposium on Thermophysical Properties, Princeton, New Jersey, 530–40, 1962.

    Google Scholar 

  185. Starling, K.E., Eakin, B.E., and Ellington, R.T., “Liquid, Gas, and Dense-Fluid Viscosity of Propane,” AIChE J., 6, 438–42, 1960.

    Article  Google Scholar 

  186. Stewart, J.R., “The Viscosity of Natural Gas Components at High Pressures,” Institute of Gas Technology, Chicago, Illinois, M.S. Thesis, 1952.

    Google Scholar 

  187. Streett, W.B., “Pressure-Volume-Temperature Data for Neon From 80–130 K and Pressures to 2000 atm,” J. Chem. Eng. Data, 16 (3), 289–92, 1971.

    Article  Google Scholar 

  188. Strumpf, H.J., Collings, A.F., and Pings, C.J., “Viscosity of Xenon and Ethane in the Critical Region,” J. C.em. Phys., 60, 3109–23, 1974.

    ADS  Google Scholar 

  189. Christy, J.A., and Kurata, F., “Liquid Viscosities of Methane and Propane,” 98–102, 1959.

    Google Scholar 

  190. Lohrenz, J., and Kurata, F., “Liquid Viscosities Above the Normal Boiling Point Ethane, Propane, and n-Butane,” AIChE J., 6, 415–9, 1960.

    Article  Google Scholar 

  191. Timrot, D.L., Serednitskaya, M.A., and Traktueva, S.A., “An Investigation of the Viscosity of Air at Temperatures of 300–570 K and Pressures of 105–1.2 x 107 Pa by the Oscillating Disc Method,” Teploenergetika, 22(3), 84–7, 1975; English translation: Therm. Eng., 22 (3), 104–8, 1975.

    Google Scholar 

  192. Tjerkstra, H.H., “The Influence of Pressure on the Viscosity of Liquid Helium I,” Physica, 18 (11), 853–61, 1952.

    Article  ADS  Google Scholar 

  193. Tkachev, A.G. and Butyrskaya, S.T., “Viscosity of F-22 and Fc-318,” Kholod. Tekh., Tr. Nauch. Konf., Leningrad Tekhnol. Inst. Kholod. Prom., S.. Dokl., 227–33, 1970.

    Google Scholar 

  194. Tkachev, A.G., Butyrskaya, S.T., and Agaev, N.A., “A Study of the Viscosity of Freons F-22, F-114, F-115, and Fc-318,” Heat Transfer-Sov. Res., 4 (3), 102–7, 1972.

    Google Scholar 

  195. Touloukian, Y.S., Saxena, S.C., and Hestermans, P., “Viscosity,” Volume 11 in Thermophysical Properties of Matter - The TPRC Data Series ( 13 Volumes), Plenum Publishing Corp, New York, New York, 1975.

    Google Scholar 

  196. Trappeniers, N.J., Botzen, A., Ten Seldam, C.A., Van den Berg, H.R., and Van Oosten, J., “Corresponding States for the Viscosity of Noble Gases up to High Densities,” Physica, 31, 1681–91, 1965.

    Article  ADS  Google Scholar 

  197. Trappeniers, N.J., Botzen, A., Van den Berg, H.R., and Van Oosten, J., “The Viscosity of Neon Between 25°C and 75°C at Pressures up to 1800 atm. Corresponding States for the Viscosity of the Noble Gases up to High Densities,” Physica, 30, 985–96, 1964.

    Article  ADS  Google Scholar 

  198. Trappeniers, N.J., Botzen, A., Van Oosten, J., and Van den Berg, H.R., “The Viscosity of Krypton Between 25° and 75°C and at Pressures up to 2000 atm,” Physica, 31, 945–52, 1965.

    Article  ADS  Google Scholar 

  199. Trappeniers, N.J., Wassenaar, T., and Wolkers, G.J., “Isotherms and Thermodynamic Properties of Krypton at Temperatures Between 0° and 150°C and at Densities up to 620 Amagat,” Physica, 32, 1503–20, 1966.

    Article  ADS  Google Scholar 

  200. Tsederberg, N.V., Popov, V.N., and Andreev, I.I., “An Experimental Study of the Viscosity of Hydrogen,” Therm. Eng., 12 (4), 116–8, 1965.

    Google Scholar 

  201. Tsederberg, N.V., Popov, V.N., and Panchenko, S. S., “Experimental Investigation of the Viscosity of Helium and Temperatures from 80 to 273 K and Pressures up to 40 MPa,” Therm. Eng., 6, 111–4, 1974.

    Google Scholar 

  202. Tsui, Chung Yiu, “Viscosity Measurements for Several Fluorinated Hydrocarbon Vapors at Elevated Pressures and Temperatures,” Purdue University, Lafayette, Indiana, M.S. Thesis, 95 pp., 1959.

    Google Scholar 

  203. Vargaftik, N.B., Tables on the Thermophysical Properties of Liquids and Gases, Second Edition, John Wiley and Sons, 1975.

    Google Scholar 

  204. Vassermann, A.A. and Rabinovich, V.A., “Thermophysical Properties of Liquid Air and Its Components,” Standards Press, 1968.

    Google Scholar 

  205. Vernet, D. and Kniazeff, V., “Determination of Physical Properties of Liquefied Natural Gas,” Rev. Inst. Fr. Petrole., 19, 1405–20, 1964.

    Google Scholar 

  206. Warburg, E. and v. Babo, L., “Viscosity of Gases and Liquids,” Ann. Phys., 17, 390–427, 1882.

    Article  Google Scholar 

  207. Wellman, E.J., “Viscosity Determination for Several Fluorinated Hydrocarbon Vapors With a Rolling Ball Viscometer,” Purdue University, Lafayette, Indiana, Ph.D. Thesis, 103 pp., 1955. [Univ. Microfilms Publ. UM-13959]

    Google Scholar 

  208. Wilbers, 0.J., “Viscosity Measurements of Several Hydrocarbon Vapors at Low Temperatures,” Purdue University, Lafayette, Indiana, M.S. Thesis, 77 pp., 1961.

    Google Scholar 

  209. Yusibova, A.D. and Agaev, N.A., “The Viscosity of Isopentane,” Gazov. Promst., 6, 46–7, 1969.

    Google Scholar 

  210. Zhdânova, N.F., “Temperature Dependence of Viscosity of Liquid Argon,” J. Exp. Theor. Phys. (USSR), 31, 724–5, 1956; English translation: Sov. Phys.-JETP, 4, 749–50, 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stephan, K., Lucas, K. (1979). Numerical Data on Viscosity. In: Viscosity of Dense Fluids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6931-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6931-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6933-3

  • Online ISBN: 978-1-4757-6931-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics