Variational, Hemivariational and Variational-Hemivariational Inequalities: Existence Results

  • D. Motreanu
  • V. Rădulescu
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 67)


The celebrated Hartman-Stampacchia theorem (see [6], Lemma 3.1, or [9], Theorem I.3.1) asserts that if V is a finite dimensional Banach space, KV is non-empty, compact and convex, A : KV* is continuous, then there exists uK such that, for every vK,
$$\langle Au,v - u\rangle \geqslant 0.$$


Banach Space Convex Subset Inequality Problem Nonempty Closed Convex Subset Lower Semicontinuous Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Brézis, Analyse fonctionnelle. Théorie et applications, Masson, 1992.Google Scholar
  2. [2]
    F. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal. 11 (1972), 251.-294.Google Scholar
  3. [3]
    F. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.MATHGoogle Scholar
  4. [4]
    J. Dugundji and A. Granas, KKM-maps and variational inequalities, Ann. Scuola Norm. Sup. Pisa 5 (1978), 679–682.MathSciNetMATHGoogle Scholar
  5. [5]
    G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.MATHGoogle Scholar
  6. [6]
    G. J. Hartman and G. Stampacchia, On some nonlinear elliptic differential equations, Acta Math. 15 (1966), 271–310.MathSciNetCrossRefGoogle Scholar
  7. [7]
    R. B. Holmes, Geometric Functional Analysis and its Applications, SpringerVerlag-New York, 1975.Google Scholar
  8. [9]
    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities, Academic Press, New York, 1980.MATHGoogle Scholar
  9. [10]
    B. Knaster, K. Kuratowski and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Mat. 14 (1929), 132–137.MATHGoogle Scholar
  10. [11]
    U. Mosco, Implicit variational problems and quasi-variational inequalities, in Nonlinear Operators and the Calculus of Variations (J.P. Gossez, E.J. Lami Dozo, J. Mawhin and L. Waelbroeck, Eds.), Lecture Notes in Mathematics 543, Springer-Verlag, Berlin, 1976, pp. 83–156.Google Scholar
  11. [12]
    D. Motreanu and P. D. Panagiotopoulos, Double eigenvalue problems for hemivariational inequalities, Arch. Rat. Mech. Analysis 140 (1997), 225–251.MathSciNetMATHCrossRefGoogle Scholar
  12. [13]
    D. Motreanu and V. Râdulescu, Existence results for inequality problems with lack of convexity, Numer. Funct. Anal. Optimiz. 21 (2000), 869–884.MATHCrossRefGoogle Scholar
  13. [14]
    Z. Naniewicz, Hemivariational Inequalities with functionals which are not locally Lipschitz, Nonlinear Analysis, T.M.A., 25 (1995), No. 12, pp. 1307–1320.MathSciNetMATHGoogle Scholar
  14. [15]
    Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, New York, 1995.Google Scholar
  15. [16]
    P. D. Panagiotopoulos, Hemivariational Inequalities: Applications to Mechanics and Engineering, Springer-Verlag, New-York/Boston/Berlin, 1993.MATHCrossRefGoogle Scholar
  16. [17]
    P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functionals, Birkhduser-Verlag, Basel, 1985.CrossRefGoogle Scholar
  17. [18]
    D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff International Publishers, The Netherlands, 1978.MATHGoogle Scholar
  18. [19]
    W. Prager, Problems of network flow, Zeitschrift für Angewandte Mathematik und Physik (Z.A.M.P.) 16 (1965), 185–193.MathSciNetMATHCrossRefGoogle Scholar
  19. [20]
    H. H. Schaefer, Topological Vector Spaces, Macmillan Series in Advances Mathematics and Theoretical Physics, New York, 1966.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • D. Motreanu
    • 1
  • V. Rădulescu
    • 2
  1. 1.Department of MathematicsUniversity of PerpignanPerpignanFrance
  2. 2.Department of MathematicsUniversity of CraiovaCraiovaRomania

Personalised recommendations