Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 67))

  • 466 Accesses

Abstract

In Partial Differential Equations, two important tools for proving existence of solutions are the Mountain Pass Theorem of Ambrosetti and Rabinowitz [1] (and its various generalizations) and the Ljusternik-Schnirelmann Theorem [16]. These results apply to the case when the solutions of the given problem are critical points of an appropriate functional of energy f, which is supposed to be real and C 1, or only differentiable, on a real Banach space X. One may ask what happens if f, which often is associated to the original equation in a canonical way, fails to be differentiable. In this case the gradient of f must be replaced by a generalized one, which is often that introduced by Clarke in the framework of locally Lipschitz functionals. In this setting, Chang [4] was the first who proved a version of the Mountain Pass Theorem, in the case when X is reflexive. For this aim, he used a “Lipschitz version” of the Deformation Lemma. The same result was used for the proof of the Ljusternik-Schnirelmann Theorem in the locally Lipschitz case. As observed by Brézis, the reflexivity assumption on X is not necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Berberian, Measure and Integration, MacMillan, 1967.

    Google Scholar 

  3. A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Meth. Nonlin. Anal. 6 (1995), 357–370.

    MathSciNet  MATH  Google Scholar 

  4. K. C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102–129.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. H. Clarke, Generalized gradients of Lipschitz functionals, Advances in Mathematics 40 (1981), 52–67.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. H. Clarke, Optimization and Nonsmooth Analysis, Willey, New York, 1983.

    MATH  Google Scholar 

  8. M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. 167 (1994), 73–100.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Gazzola and V. Râdulescu, A nonsmooth critical point theory approach to some nonlinear elliptic problems in IR N, Differential and Integral Equations 13 (2000), 47–60.

    MathSciNet  MATH  Google Scholar 

  10. E. A. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1976), 609–623.

    MathSciNet  Google Scholar 

  11. P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré, Analyse Non Linéaire 1 (1984), (I) 109–145, (II) 223–283.

    Google Scholar 

  12. J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Diff. Equations 52 (1984), 264–287.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  14. S. Minakshisundaran and A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, Canadian J. Math. 1 (1949), 242–256.

    Article  MathSciNet  Google Scholar 

  15. P. Mironescu and V. Râdulescu, A multiplicity theorem for locally Lipschitz periodic functionals, J. Math. Anal. Appl. 195 (1995), 621–637.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Palais, Ljusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115–132.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Pleijel, On the eigenvalues and eigenfunctions of elastic plates, Comm. Pure Appl. Math. 3 (1950), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Zeit. Angew. Math. Phys. (ZAMP) 43 (1992), 270–291.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Râdulescu, Mountain Pass theorems for non-differentiable functions and applications, Proc. Japan Acad. 69A (1993), 193–198.

    Article  MATH  Google Scholar 

  20. V. Râdulescu, Locally Lipschitz functionals with the strong Palais-Smale property, Revue Roum. Math. Pures Appl. 40 (1995), 355–372.

    MATH  Google Scholar 

  21. V. Râdulescu, A Ljusternik-Schnirelmann type theorem for locally Lipschitz functionals with applications to multivalued periodic problems, Proc. Japan Acad. 71A (1995), 164–167.

    Article  MATH  Google Scholar 

  22. V. Râdulescu, Nontrivial solutions for a multivalued problem with strong resonance, Glasgow Math. Journal 38 (1996), 53–61.

    Article  MATH  Google Scholar 

  23. V. Râdulescu, Hernivariational inequalities associated to multivalued problems with strong resonance, in Nonsmooth/Nonconvex Mechanics: Modeling, Analysis and Numerical Methods, dedicated to the memory of Professor P.D. Panagiotopoulos, Eds.: D.Y. Gao, R.W. Ogden, G.E. Stavroulakis, Kluwer Academic Publishers, 2000, pp. 333–348.

    Google Scholar 

  24. W. Rudin, Functional Analysis, Mc Graw-Hill, 1973.

    Google Scholar 

  25. A. Szulkin, Critical Point Theory of Ljusternik-Schnirelmann Type and Applications to Partial Differential Equations, Sémin. Math. Sup., Presses Univ. Montréal, 1989.

    Google Scholar 

  26. A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight, Studia Mathematica 135 (1999), 191–201.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Motreanu, D., Rădulescu, V. (2003). Multivalued Elliptic Problems in Variational Form. In: Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and Its Applications, vol 67. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6921-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6921-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5248-6

  • Online ISBN: 978-1-4757-6921-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics