Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 67))

  • 469 Accesses

Abstract

The present Chapter deals with critical point theory for three different nonsmooth situations. First, we set forth the critical point theory for locally Lipschitz functionals, following the approach of Chang [4] and Clarke [5]. Then a critical point theory is described for nonsmooth functionals expressed as a sum of a locally Lipschitz function and a convex, proper and lower semicontinuous function, using the development in Motreanu and Panagiotopoulos [26]. Finally, the critical point theory for continuous functionals defined on a complete metric space as introduced by Degiovanni and Marzocchi [7] is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Adly and G. Buttzaao and M. Thera,Critcal poins for nonsmooth energy function and applicatoins, Nonlinear. Anal. 32 (1998), 711–718.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Brézis, J.-M. Coron and L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Commun. Pure Appl. Math. 33 (1980), 667–684.

    Article  MATH  Google Scholar 

  4. K.-C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102–129.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. H. Clarke, Optimization and Nonsmooth Analysis, New York, John WileyInterscience, 1983.

    MATH  Google Scholar 

  6. M. Degiovanni, Nonsmooth critical point theory and applications, Second World Congress of Nonlinear Analysts (Athens, 1996), Nonlinear Anal. 30 (1997), 8999.

    Article  MathSciNet  Google Scholar 

  7. M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl., IV. Ser. 167 (1994), 73–100.

    MathSciNet  MATH  Google Scholar 

  8. G. Dinch, P. Jebelean and D. Motreanu, Existence and approximation for a general class of differential inclusions, Houston J. Math. 28 (2002), 193–215.

    MathSciNet  Google Scholar 

  9. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324353.

    Google Scholar 

  10. I. Ekeland, Nonconvex minimization problems, Bull. (New Series) Amer. Math. 1 (1979), 443–474.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Fundo, Hemivariational inequalities in subspaces of Lr(Q)(p > 3), Nonlinear Anal. 33 (1998), 331–340.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Gasinski and N. S. Papageorgiou, Solutions and multiple solutions for quasi-linear hemivariational inequalities at resonance, Proc. R. Soc. Edinb. 131 (2001), 1091–1111.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6 (1989), 321–330.

    MathSciNet  MATH  Google Scholar 

  14. D. Goeleven and D. Motreanu, Minimax methods of Szulkin’s type unilateral problems, Functional analysis. Selected topics. Dedicated to the memory of the late Professor P. K. Kamthan (Jain, Pawan K. (ed.)), Narosa Publishing House, New Delhi, 158–172, 1998.

    Google Scholar 

  15. D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, Variational and Hemivariational Inequalities, Theory, Methods and Applications,Volume I: Unilateral Analysis and Unilateral Mechanics, Kluwer Academic Publishers, Dordrecht/Boston/London, to appear.

    Google Scholar 

  16. D. Goeleven and D. Motreanu, Variational and Hemivariational Inequalities, Theory, Methods and Applications,Volume II: Unilateral Problems, Kluwer Academic Publishers, Dordrecht/Boston/London, to appear.

    Google Scholar 

  17. J. Haslinger and D. Motreanu, Hemivariational inequalities with a general growth condition: existence and approximation, submitted.

    Google Scholar 

  18. L. T. Hu, Homotopy Theory, Academic Press, New York, 1959.

    MATH  Google Scholar 

  19. N. C. Kourogenis and N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic equations at resonance, Kodai Math. J. 23 (2000), 108–135.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian, J. Differ. Equations 182 (2002), 108–120.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences 74, Springer-Verlag, New York, 1989.

    Google Scholar 

  22. D. Motreanu, Existence and critical points in a general setting, Set-Valued Anal. 3 (1995), 295–305.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Motreanu, Eigenvalue problems for variational-hemivariational inequalities in the sense of P. D. Panagiotopoulos, Nonlinear Anal. 47 (2001), 5101–5112.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Motreanu and Z. Naniewicz, Discontinuous semilinear problems in vector-valid function spaces, Differ. Integral Equ. 9 (1996), 581–598.

    MathSciNet  MATH  Google Scholar 

  25. D. Motreanu and Z. Naniewicz, A topological approach to hemivariational inequalities with unilateral growth condition, J. Appl. Anal. 7 (2001), 23–41.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Motreanu and P. D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optimization and its Applications 29, Kluwer Academic Publishers, Dordrecht/Boston/London, 1998.

    Google Scholar 

  27. D. Motreanu and Cs. Varga, Some critical points results for locally Lipschitz functionals, Commun. Appl. Nonlinear Anal. 4 (1997), 17–33.

    MathSciNet  MATH  Google Scholar 

  28. D. Motreanu and Cs. Varga, A nonsmooth equivariant minimax principle, Commun. Appl. Anal. 3 (1999), 115–130.

    MathSciNet  MATH  Google Scholar 

  29. J. R. Munkres, Elementary Differential Topology, Princeton University Press, Princeton, 1966.

    Google Scholar 

  30. Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications, Pure and Applied Mathematics, Marcel Dekker 188, New York, 1994.

    Google Scholar 

  31. R. S. Palais and S. Smale, A generalized Morse theory, Bull. Am. Math. Soc. 70, (1964) 165–172.

    Article  MathSciNet  MATH  Google Scholar 

  32. J.-P. Penot, Well-behaviour, well-posedness and nonsmooth analysis, PLISKA, Stud. Math. Bulg. 12 (1998), 141–190.

    MathSciNet  MATH  Google Scholar 

  33. P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, 1986.

    Google Scholar 

  34. V. Ràdulescu, Mountain pass theorems for non-differentiable functions and applications, Proc. Japan Acad., Ser. A 69 (1993), 193–198.

    MATH  Google Scholar 

  35. N. K. Ribarska, Ts. Y. Tsachev, M. I. Krastanov, Speculating about mountains, Serdica Math. J. 22 (1996), 341–358.

    MathSciNet  MATH  Google Scholar 

  36. B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems. Nonlinear operator theory, Math. Comput. Modelling 32 (2000), 1485–1494.

    Article  MathSciNet  MATH  Google Scholar 

  37. B. Ricceri, New results on local minima and their applications, in: Equilibrium Problems and Variational Models (editors: F. Giannessi, A. Maugeri and P. M. Pardalos), Taormina, 2–5 December 1998, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001, pp. 255–268.

    Google Scholar 

  38. W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, New York, 1973.

    MATH  Google Scholar 

  39. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  40. A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincaré. Anal. Non Linéaire 3 (1986), 77–109.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Motreanu, D., Rădulescu, V. (2003). Critical Points for Nonsmooth Functionals. In: Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and Its Applications, vol 67. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6921-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6921-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5248-6

  • Online ISBN: 978-1-4757-6921-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics