Effect of Pyridoxine-2-Oxoglutarate Administration in Patients with Advanced Cirrhosis : Control of Ammonia Pyruvate and Lactate High Plasma Concentrations

  • F. Salerno
  • M. C. Lorenzini
  • M. Conti
  • R. Abbiati
  • F. Fici
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 153)


The treatment of cirrhotic patients with impending coma is often limited, being the pathogenesis of hepatic encephalopathy barely known. The currently most employed therapeutic measures are directed towards reducing hyperammonemia, although a causative relation between elevated ammonia concentrations in plasma or CSF and the encephalopathy has not been firmly established1. Cirrhotic liver has a lowered ability to clear ammonia, therefore it is necessary to inhibit ammonia production or to enhance its extra-hepatic utilization. Oxoglutaric acid, an intermediate of the trycarboxilic acid cycle (TAC), has been used in order to reduce high ammonia concentrations because it can be aminated to form glutamic acid in extrahepatic tissues2,3. Administration of oxoglutaric acid in pharmacological doses could affect other metabolites as well as ammonia, however there are no studies evaluating such effects in cirrhotic patients. Since changes in the amino acid pattern or in the concentrations of some products of glucose oxidization could be involved in the pathogenesis of the hepatic encephalopathy, we studied the effect of both acute and chronic administration of oxoglutaric acid on ammonia, amino acids, glucose, lactic and pyruvic acids in cirrhotic patients with hyperammonemia.


Hepatic Encephalopathy Cirrhotic Patient Lactic Acidosis Pyruvic Acid Cirrhotic Liver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. O. Walker and S. Schenker, Pathogenesis of hepatic encephalopathy with special reference to the role of blood ammonia, Am. J. Clin. Nutr. 23: 619 (1970).PubMedGoogle Scholar
  2. B. Peter, M. Imler, J. Tongio, J. L. Schlienger, and J. Stahl, Influence de l’alpha-cétoglutarate de l’ornithine sur l’hyper-ammoniémie provoquée des cirrotiques, Ann. Gastroent. Hepatol. 16: 179 (1974).Google Scholar
  3. 3.
    M. Michel, P. Oge, and L. Bertrand, Action de l’alphacétoglutarate d’ornithine sur l’hyperammoniémie du cirrhotique, Presse Med. 79: 867 (1971).Google Scholar
  4. 4.
    G. E. Miller and J. D. Rice jr, Determination of the concentration of blood ammonia by use of cation exchange method, J. Lab. Clin. Med. 60: 170 (1962).Google Scholar
  5. D. M. Spackman, W. H. Stein, and S. Moore, Automatic recording ‘ apparatus for use in the chromatography of amino acids, Anal. Chem. 30: 1190 (1958).Google Scholar
  6. 6.
    H. U. Bergemeyer, “Methods of enzymic analysis”, Academic Press Inc., New York (1974).Google Scholar
  7. A. H. Lockwood, J. M. Mc Donald, R. E. Reiman, A. S. Gelbard, J. S. Laughlin, T. E. Duffy, and F. Plum, The dynamics of ammonia metabolism in man: effects of liver disease and hyperammonemia, J. Clin. Invest. 63: 449 (1979).Google Scholar
  8. 8.
    F. Ghinelli, G. Magnani, G. Pedretti, G. Pelosi, P. Perinotto, and D. Sacchini, Effetto dell’alfachetoglutarato di piridossina sull’iperammoniemia dei cirrotici, Epatologia 26: 261 (1980).Google Scholar
  9. 9.
    J. L. Schlienger, A. Frick, and M. Imler, Effect of ornithine and alphaketoglutarate on hyperammonemia in hepatectomized and abdominal eviscerated rats, in:“III Ammoniak symposium”, G. Wewalka and B. Dragosics eds., Verlag-Stuttgart (1978).Google Scholar
  10. 10.
    D. H. Elwyn, W. J. Launder, H. C. Parikh and E. M. Wise jr, Roles of plasma and erythrocytes in interorgan transport of amino acids in dogs, Am. J. Physiol. 222: 1333 (1972).PubMedGoogle Scholar
  11. 11.
    R. E. Heinig, E. F. Clarke, and C. Waterhouse, Lactic acidosis and liver disease, Arch. Int. Med. 139: 1229 (1979).CrossRefGoogle Scholar
  12. 12.
    J. Bremer, Pyruvate dehydrogenase, substrate specificity and product inhibition, Eur. J. Biochem. 8: 535 (1969).Google Scholar
  13. 13.
    M. N. Berry and J. Scheuer, Splanchnic lactic acid metabolism in hyperventilatory metabolic alkalosis and schock, Metabolism 16: 537 (1967).Google Scholar
  14. 14.
    P. J. Woll and C. O. Record, Lactate elimination in man: effects of lactate concentrations and hepatic dysfunction, Eur. J. Clin. Invest. 9: 395 (1979).CrossRefGoogle Scholar
  15. L. Garbin, M. Plebani, and P. M. Terribile, Effect of ACP (pyridoxine-2-oxoglutarate) on CC1 intoxication and in streptozotocin-induced ketosis in rat, Acta Vitamin. Enzymol. 6: 175 (1977).Google Scholar
  16. H. Connor, H. F. Woods, J. D. Murray, and J. C. G. Ledingham, Lactate metabolism in liver disease, Eur. J. Clin. Invest. 7: 244 (1977).Google Scholar
  17. 17.
    R. Mulhausen, A. Eichenholz, and A. Blumentals, Acid-base disturbances in patients with cirrhosis of the liver, Medicine 46: 185 (1967).Google Scholar
  18. 18.
    P. B. Oliva, Lactic acidosis, Am. J. Med. 48: 209 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • F. Salerno
    • 1
  • M. C. Lorenzini
    • 1
  • M. Conti
    • 1
  • R. Abbiati
    • 1
  • F. Fici
    • 1
  1. 1.Third Medical ClinicUniversity of MilanMilanItaly

Personalised recommendations