Skip to main content

Evolutionary Relationships between Arginine and Creatine in Muscle

  • Chapter
Urea Cycle Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 153))

Abstract

In addition to being a constituent of proteins, arginine during evolution, has come to have important additional functions as a free amino acid. Thus, there have been three extensions to the metabolic pathway of its synthesis — phosphorylation to form phosphoarginine, hydrolysis to form urea, and transfer of its amidino group to certain amines to form a variety of guanidino compounds used as phosphagens in muscle. The present paper briefly refers to the special significance of arginine in the way it has permitted important evolutionary advances. It also raises the question of possible secondary effects of an arginine deficiency to the musculature and nervous system in the very young animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Campbell (ed.), “Comparative Biochemistry of Nitrogen Metabolism” (a) Vol. 1.”The Invertebrates”. (b) Vol. 2. “The Vertebrates”, (1970).

    Google Scholar 

  2. G. S. Sidhu, W. A. Montgomery, and M. A. Brown, Post mortem changes and spoilage in rock lobster muscle, J. Food. Technology 9: 357 (1974).

    Article  CAS  Google Scholar 

  3. S. P. Davuluri, F. J. R. Hird, and R. M. McLean, A re-appraisal of the function and synthesis of phosphoarginine and phosphocreatine in muscle, Comp. Biochem. and Physiol. 69 (B): 329 (1981).

    Google Scholar 

  4. S. P. Bessman and P. J. Geiger, Transport of energy in muscle: the phosphorylcreatine shuttle, Science 211: 448 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. W. E. Jacobus and A. L. Lehninger, Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport, J. Biol. Chem. 248: 4803 (1973).

    PubMed  CAS  Google Scholar 

  6. V. A. Saks, V. V. Kupriyanov, G. V. Elizarova, and W. E. Jacobus, Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation, J. Biol. Chem. 255: 755 (1980).

    PubMed  CAS  Google Scholar 

  7. J. B. Walker, Creatine: biosynthesis, regulation and function, Adv. Enzymol. 50: 177 (1979).

    PubMed  CAS  Google Scholar 

  8. C. D. Fitch, D. D. Lucy, J. H. Bornhofen, and G. V. Dalrymple, Creatine metabolism in skeletal muscle. II. Creatine kinetics in man, Neurology 18: 32 (1968).

    Article  PubMed  CAS  Google Scholar 

  9. R. F. G. Booth and J. B. Clark, Studies on the microchondrially bound form of rat brain creatine kinase, Biochem. J. 170: 145 (1978).

    PubMed  CAS  Google Scholar 

  10. D. T. Woznicki and J. B. Walker, Utilization of cyclocreatine phosphate, an analogue of creatine phosphate, by mouse brain during ischemia and its sparing action on brain energy reserves, J. Neurochem. 34: 1247 (1980).

    Article  PubMed  CAS  Google Scholar 

  11. O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W. Schultz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239: 18 (1964).

    PubMed  CAS  Google Scholar 

  12. R. L. Veech, R. L. Harris, D. Veloso, and E. H. Veech, Freeze blowing: a new technique for the study of brain in vivo. J. Neurochem. 20: 183 (1973).

    Article  CAS  Google Scholar 

  13. W. R. Featherston, Q. R. Rogers, and R. A. Freedland, Relative importance of kidney and liver in synthesis of arginine by the rat, Am. J. Physiol. 224: 127 (1973).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hird, F.J.R., Davuluri, S.P., McLean, R.M. (1982). Evolutionary Relationships between Arginine and Creatine in Muscle. In: Lowenthal, A., Mori, A., Marescau, B. (eds) Urea Cycle Diseases. Advances in Experimental Medicine and Biology, vol 153. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6903-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6903-6_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6905-0

  • Online ISBN: 978-1-4757-6903-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics