Advertisement

Acute Glucagon Treatment in Rats Fed Various Protein Diets Effect on N-Acetyl Glutamate Concentration

  • L. Cathelineau
  • D. Rabier
  • F. X. Coudé
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 153)

Abstract

Carbamoyl phosphate synthetase (ammonia) (CPS) which is localized in mitochondria has an absolute requirement for N-acetyl glutamate (NAGA) as activator. Since the important work of Shigesada and Tatibanal the role of its intramitochondrial concentration upon the regulation of ureogenesis has been stressed by numerous workers: the levels of NAGA show a positive correlation with the ability of the liver or of the isolated hepatocytes to synthetize citrulline1,2,3,4. NAGA is closely localized into mitochondria, because it is destroyed in the cytosol by a powerful deacylase activity5 . Then, NAGA content in mitochondria must be appreciated either by measurements in the whole liver or by assay on isolated mitochondria. By the use of one of these two methods, it has been reported that low NAGA concentrations are obtained with short6 or prolonged3 hypo or aprotidic diets, with acute changes from 70 % to 5 % proteins in the diet2, with acute accumulation of toxic metabolites in the liver, propionate78 pent-4-enoate9 and valproate10 . Low NAGA concentrations are also observed during the last days of the gestation in rat females11. In contrary, high NAGA levels are obtained with short6 and prolonged3 hyperprotidic diets, with acute changes from 5 % to 70 % or protein in the food2, with the administration in vivo of arginine6 and also observed during the delivery of rat females11. Prolonged hyperprotidic diets increase the rate of N-acetyl glutamate synthetase activity12 while short term changes of protein amount in nutriments have no effect6 on it.

Keywords

Carbohydrate Diet Carbamoyl Phosphate Synthetase Carbamyl Phosphate Naga Level Acetyl Glutamate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Shigesada and M. Tatibana, Role of Acetyl glutamate in ureotelism, J. Biol. Chem. 246: 5588 (1971).PubMedGoogle Scholar
  2. 2.
    T. Saheki, T. Katsunuma and M. Sase, Regulation of urea synthesis in rat liver, J. Biochem. 85: 551 (1977).Google Scholar
  3. 3.
    J. D. Mc Givan, N. H. Bradford and J. Mendes-Mourao, The regulation of carbamoyl phosphate synthetase activity in rat liver mitochondria, Biochem. J. 154: 415 (1976).Google Scholar
  4. 4.
    A. J. Meijer and G. M. Van Voerkom, Control of the rate of citrulline synthesis by short term changes in N-acetyl glutamate levels in isolated rat liver mitochondria, Febs Lett. 86: 117 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Reglero, J. Rivas, J. Mendelson, R. Wallace and S. Grisolia, Deacylation and transacetylation of acetyl glutamate and. acetylornithine in rat liver, Febs Lett. 81: 13 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Tatibana and K. Shigesada, Regulation of urea biosynthesis by acetyl glutamate arginine system in:“The urea cycle”. S. Grisolia, R. Baguena, and F. Mayor, Eds. John Wiley and sons, New York.Google Scholar
  7. 7.
    D. Rabier, L. Cathelineau, P. Briand and P. Kamoun, Propionate and succinate effects on acetylglutamate biosynthesis by rat liver mitochondria, Biochem. Biophys. Res. Comm. 91: 456 (1979).CrossRefGoogle Scholar
  8. 8.
    P. Stewart and M. Walser, Failure of the normal ureagenic response to amino-acids in organic acids loaded rats, J. Clin. Invest. 66: 484 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Aoyagi, M. Mori and M. Tatibana, Inhibition of urea synthesis by Pent-4-enoate associated with decrease in N-acetyl-Lglutamate concentration in isolated hepatocytes. Biochim. Biophys. Acta 587: 515 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    F. X. Coudé, D. Rabier, L. Cathelineau, G. Grimber, P. Parvy and P. Kamoun, A mechanism for valproate induced hyperammonemia. Ped. Res. 15: 974 (1981).CrossRefGoogle Scholar
  11. 11.
    L. Cathelineau, D. Rabier, F. Petit and P. Kamoun, Physiological and hormonal variations of acetyl glutamate and citrullinogenesis in rat liver mitochondria, Enzyme (in press).Google Scholar
  12. 12.
    K. Shigesada and M. Tatibana, N-acetyl glutamate synthetase rat liver mitochondria, Eur. J. Biochem. 84: 285 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    R. K. Yamazaki and G.S. Graetz, Glucagon stimulation of citrulline formation in isolated hepatic mitochondria, Arch. Biochem. Biophys. 178: 19 (1977).CrossRefGoogle Scholar
  14. 14.
    J. Bryla, E. J. Harris and J. A. Plumb, The stimulatory effect of glucagon and dibutyryl cyclic AMP on ureogenesis and gluconeogenesis in relation to the mitochondrial ATP content. Febs Lett. 80: 443 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    K. G. Triebwasser and R. A. Freedland, The effect of glucagon on ureogenesis from ammonia in isolated mitochondria, Biochem. Biophys. Res. Comm. 76: 1159 (1977).CrossRefGoogle Scholar
  16. 16.
    R. K. Yamazaki, Glucagon stimulation of mitochondrial respiration, J. Biol. Chem. 250: 7924 (1975).PubMedGoogle Scholar
  17. 17.
    H. E. Hengsens, A. J. Verhoeven and A. J. Meijer, The relationship between N-acetylglutamate and activity of carbamoyl phosphate synthetase (ammonia). The effect of glucagon, Eur. J. Biochem. 107: 197 (1980).CrossRefGoogle Scholar
  18. 18.
    L. Cathelineau, D. Rabier, F. Petit and P. Kamoun, Rôle de l’acetyl glutamate dans la stimulation de la citrullinogénèse par le glucagon, C.R. Acad. Sc. Paris, 291: 625 (1980).Google Scholar
  19. 19.
    M. A. Titheradge and R. C. Haynes, The hormonal stimulation of ureogenesis in isolated hepatocytes through increases in mitochondrial ATP production, Arch. Biochem. Biophys. 201: 44 (1980).CrossRefGoogle Scholar
  20. 20.
    G. H. Hogeboom, Fractionation of cells components in animal tissues in “Methods in Enzymology”, S. Colowick and N. Kaplain eds. Academic Press 1:16 (1955).Google Scholar
  21. 21.
    L. Cathelineau, F. Petit, F. X. Coudé and P. Kamoun, Effect of propionate and pyruvate on citrulline synthesis and ATP content in rat liver mitochondria, Biochem. Biophys. Res. Comm. 90: 327 (1979).CrossRefGoogle Scholar
  22. 22.
    W. J. Graafmans, R. Charles and J. M. Tager, Mitochondrial citrulline synthesis with exogenous ATP, Biochim. Biophys. Acta 153: 916 (1968).CrossRefGoogle Scholar
  23. 23.
    E. A. Siess, D.G. Broks, H. K. Lattke and 0. H. Wieland, Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate, Biochem. J. 166: 225 (1977).Google Scholar
  24. 24.
    R. Charles, J. Tager and E. Slater, Citrulline synthesis in rat liver mitochondria, Biochem. Biophys. Acta 131: 29 (1967).CrossRefGoogle Scholar
  25. 25.
    G. Brown and P. P. Cohen, Comparative biochemistry of urea synthesis, J. Biol. Chem. 234: 1769 (1959).PubMedGoogle Scholar
  26. 26.
    P. J. Snodgrass, The effect of pH on the kinetics of human liver ornithine carbamyl transferase, Biochemistry 7: 3047 (1968).PubMedCrossRefGoogle Scholar
  27. 27.
    F.X. Coudé, L. Sweetman and W. L. Nyhan, Inhibition by propionyl coenzyme A of N-acetyl glutamate synthetase in rat liver mitochondria, J. Clin. Invest. 64: 1544 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    J. R. Williamson and B. E. Corkey, Assays of intermediates of the citric acid cycle and related compounds by fluorometic enzyme method, in:“Methods in Enzymology”, S. Colowick and N. Kaplan Eds.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • L. Cathelineau
    • 1
  • D. Rabier
    • 1
  • F. X. Coudé
    • 1
  1. 1.Laboratoire de Biochimie GénétiqueHôpital Necker-Enfants MaladesParis Cedex 15France

Personalised recommendations