The Behavior of Trace Metals in Marine Anoxic Waters: Solubilities at the Oxygen-Hydrogen Sulfide Interface

  • Steven Emerson
  • Lucinda Jacobs
  • Brad Tebo
Part of the NATO Conference Series book series (NATOCS, volume 9)


The predicted equilibrium behavior of trace metals across the oxygen-hydrogen sulfide interface in the environment is dependent upon the metal affinity for solid sulfide and metal sulfide complex formation. Equilibrium solubility estimates for iron, manganese, copper, nickel and cadmium demonstrate a wide range of trace metal behavior and generally reproduce environmentally observed trends, although the data are extremely limited. The absolute magnitude of the metal concentrations in sulfide containing waters is difficult to predict from equilibrium calculations because of uncertainty in the solubility data and the identification of the solid phase which forms.

The kinetics of oxidation of the reduced form of metals which change oxidation states across the oxygen-hydrogen sulfide interface is variable because of the chemical behavior of the ion in water and the role of catalysis by bacteria. Manganese oxidizing bacteria greatly enhance the rate of Mn(II) oxidation in waters containing low oxygen concentrations at the oxygen-hydrogen sulfide interface in Saanich Inlet, an anoxic fjord in British Columbia, Canada.


Trace Metal Deep Ocean Water Oxic Water Total Sulfide Anoxic Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spencer, D.W. and P.B. Brewer, 1971: Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. J. Geophys. Res., 76, 5877.CrossRefGoogle Scholar
  2. 2.
    Emerson, S., R.E. Cranston and P.S. Lits, 1979: Redox species in a reducing fjord: Equilibrium and kinetic considerations. Deep-Sea Res., 26A, 859–878.CrossRefGoogle Scholar
  3. 3.
    Langmuir, D., 1979: Techniques of estimating thermodynamic properties for some aqueous complexes of geochemical interest. In: “Chemical Modeling in Aqueous Systems”, ( Jenne, ed. ), ACS Symposium 93, 353–387.CrossRefGoogle Scholar
  4. 4.
    Stumm, W. and J.J. Morgan, 1970: Aquatic Chemistry. WileyInterscience, New York, 583 pp.Google Scholar
  5. 5.
    Schwarzenbach, G., 1961: The general, selective and specific formation of complexes by metal cations. Adv. Inorg. Radiochem., 3, 257, 265–270.Google Scholar
  6. 6.
    Pearson, R.D. (ed.), 1965: Hard and Soft Bases. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, 480 pp.Google Scholar
  7. 7.
    Boyle, E.A. and J.M. Edmond, 1977: Determination of copper, nickel and cadmium in seawater by APDC chelate coprecipitation and flameless atomic adsorption spectrophotometry. Analytica Chemica Acta., 91, 189.CrossRefGoogle Scholar
  8. 8.
    Jacobs, L. and S. Emerson, 1982: Anoxic controls of trace metal solubility in a reducing fjord.Google Scholar
  9. 9.
    Boulegue, J., 1977: Equilibria in a sulfide rich water from Enghien-les-Bains (France). Geochim. et Cosmochim. Acta., 41, 1751–1758.CrossRefGoogle Scholar
  10. 10.
    Emerson, S., L. Jacobs, S. Kaihorn, R. Rosson, B. Tebo, and K. Nealson, 1982: Environmental oxidation rate of manganese(II ): Bacterial catalysis.Google Scholar
  11. 11.
    Anderson, J.J. and A.H. Devol, 1973: Deep water renewal in Saanich Inlet, an intermittently anoxic basin. Estuarine and Coastal Marine Sci., 1, 1.CrossRefGoogle Scholar
  12. 12.
    Boulegue, J. and G. Michard, 1979: Sulfur speciations and redox processes in reducing environments. In: “Chemical Modeling in Aqueous Systems”, (Jenne, ed.) ACS Symposium 93, 25–50.Google Scholar
  13. 13.
    Lieberman, S., 1979: Stability of copper complexes with seawater humic substances. Ph.D. Thesis, University of Washington, Seattle, WA.Google Scholar
  14. 14.
    Mantoura, R.F.C., A. Dickson and J.P. Riley, 1978: The complexation of metals with humic materials in natural waters. Estuarine and Coastal Marine Science, 6, 387–408.CrossRefGoogle Scholar
  15. 15.
    Nordstrom, D.K., L.N. Plummer, T.M.L. Wigley, T.J. Wolery, J.W. Ball, E.A. Jenne, R.L. Bassett, D.A. Crerar, T.M. Florence, B. Fritz, M. Hoffman, G.R. Holdren, Jr., G.M. Lafon, S.V. Mattigod, R.E. McDuff, F. Morel, M.M. Reddy, G. Sposito and J. Thrailkill, 1979: A comparison of computerized chemical models for equilibrium calculations in aqueous systems. In: “Chemical Modeling in Aqueous Systems”, ( Jenne, ed. ), ACS Symposium 93.Google Scholar
  16. 16.
    Whitfield, M., 1975: Seawater as an electrolyte solution. In: “Chemical Oceanography”, Vol 1, ( Riley and Chesters, eds. ), Academic Press.Google Scholar
  17. 17.
    Leckie, J.O. and M.B. Nelson, 1975: Role of natural and hetrogeneous sulfide systems in controlling the concentration and distribution of heavy metals: Second International Symposium on Environmental Biochemistry, Burlington, Ontario, Canada (unpublished manuscript).Google Scholar
  18. 18.
    Herr, F.L. and G.R. Helz, 1978: On the possibility of bisulfide ion-pairs in natural brines and hydrothermal solutions. Econ. Geo., 73, 73–81.CrossRefGoogle Scholar
  19. 19.
    Davison, W., 1979: Soluble inorganic ferrous complexes in natural waters. Geochim. et. Cosmochim. Acta., 43, 1693–1699.CrossRefGoogle Scholar
  20. 20.
    Smith, R.M. and A.E. Martell, 1976: Critical Stability Constants, Vol. 4, Inorganic Complexes, Plenum Press, New York, 257 pp.Google Scholar
  21. 21.
    Boulegue, J. and G. Michard, 1978: Costantes de formation des ions polysulfures S62-, S52- et S42- eu phase aqueuse. Journal Francais d’Hydrologie, 9, 27–34.CrossRefGoogle Scholar
  22. 22.
    Cloke, P.L., 1963a: The geologic role of polysulfides, Pt. 1: The distribution of ionic species in aqueous sodium polysulfide solutions. Geochim. et Cosmochim. Acta., 27, 1265–1298.CrossRefGoogle Scholar
  23. 23.
    Barnes, H.L., 1979: Geochemistry of Hydrothermal Ore Deposits. Wiley-Interscience, New York, 798 pp.Google Scholar
  24. 24.
    Naunov, G.B., B.N. Ryzhenco, I.L. Khodakovsky, 1974: Handbook of Thermodynamic Data (translated from the Russian edition, 1971, by G.J. Solermani) NTIS Report PB-226722, 328 pp.Google Scholar
  25. 25.
    Crerar, D.A. and H.L. Barnes, 1976: Ore solution chemistry, V: solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200°C to 350°C. Econ. Geol., 71, 722–794.CrossRefGoogle Scholar
  26. 26.
    Snellgrove, R.A. and H.L. Barnes, 1979: In: Solubilities of Ore Minerals (H.L. Barnes) In: “ Geochemistry of Hydrothermal Ore Deposits”,2nd ed. ( Barnes, ed. ), WileyInterscience.Google Scholar
  27. 27.
    Cloke, P.L., 1963b: The geologic role of polysulfides, Pt. 2: The solubility of acanthite and covellite in sodium polysulfide solutions. Geochim. et. Cosmochim. Acta., 27, 1299–1319.Google Scholar
  28. 28.
    Ste-Marie, J., A.E. Torma and A.O. Gübeli, 1964: The stability of thio-complexes and solubility products of metal sulphides 1, cadmium sulphide. Canadian J. of Chem., 42, 662–668.CrossRefGoogle Scholar
  29. 29.
    Baes, D.F. and R.E. Mesmer, 1976: The Hydrogen of Cations, John Wiley Inc., Interscience.Google Scholar
  30. 30.
    Whitfield, M., D.R. Turner and A.G. Dickson, 1981: The equilibrium speciation of dissolved components in fresh water and seawater at 25°C and 1 atmosphere pressure, unpublished manuscript.Google Scholar
  31. 31.
    Wuensch, B.J., 1974: Sulfide crystal chemistry. In: “Sulfide Mineralogy”, Vol. 1, ( Ribbe, ed.), Mineral.Soc. of Am. Short Courses Notes.Google Scholar
  32. 32.
    Jorgensen, R.B., J.G. Kuenen and Y. Cohen, 1979: Microbial-transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol. Oceanogr., 24, 799–822.CrossRefGoogle Scholar
  33. 33.
    Chen, K.Y. and S.K. Gupta, 1973: Formation of polysulfides in aqueous solution. Environ. Lett., 4, 187–200.CrossRefGoogle Scholar
  34. 34.
    Trudinger, P.A., 1979: The biological sulfur cycle. In: “Biogeochemical Cycling of Mineral-Forming Elements”, (Trudinger and Swain, eds.), Elsevier Press, New York.Google Scholar
  35. 35.
    Richards, R.A., 1965: Anoxic basins and fjords. In: “Chemical Oceanography”, Vol. 1, ( Riley and Skirrow, eds.), Academic Press, New York, 611–641.Google Scholar
  36. 36.
    Craig, J.R. and S.D. Scott, 1974: Sulfide phase equilibrium. In: “Sulfide Mineralogy”, Vol. 1, ( Ribbe, ed.), Mineral Soc. of Am. Short Course Notes.Google Scholar
  37. 37.
    Bruland, K.W., 1980: Oceanographic distributions of cadmium, zinc, nickel and copper in the North Pacific. Earth and Planet. Sci. Lett., 47, 176–198.CrossRefGoogle Scholar
  38. 38.
    Martin, J.H. and G.A. Knauer, 1980: Manganese Cycling in the N. E. Pacific Waters. Earth and Planet. Sci. Lett., 51, 266–274.CrossRefGoogle Scholar
  39. 39.
    Berner, R.A., 1967: Thermodynamic stability of sedimentary iron sulfides. Amer. J. Sci., 265, 773–785.CrossRefGoogle Scholar
  40. 40.
    Suess, E., 1979: Mineral phases formed in anoxic sediments by microbiol decomposition of organic matter. Geochim. et Cosmochim. Acta., 43, 339–352.CrossRefGoogle Scholar
  41. 41.
    Edmond, J.M., C. Measures, R. McDuff, L.H. Chan, P. Collier, B. Grant, L.I. Gordon and J.B. Corliss, 1979a: Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data. Earth and Planet. Sci. Lett., 46, 1–18.CrossRefGoogle Scholar
  42. 42.
    Edmond, J.M., C. Measures, B. Manigum, B. Grant, F.R. Sclater, R. Collier, A. Hudson, L.I. Gordon and J.B. Carliss, 1979b: On the formation of metal rich deposits at ridge crests. Earth and Planet. Sci. Lett., 46, 19–30.CrossRefGoogle Scholar
  43. 43.
    Murray, J.W. and G. Gill, 1978: The geochemistry of iron in Puget Sound. Geochim. et. Cosmochim. Acta., 42, 9–20.CrossRefGoogle Scholar
  44. 44.
    Morgan, J.J., 1964: Chemistry of aqueous manganese II and IV. Ph.D. Thesis, Harvard University, Cambridge, MA. 244 pp.Google Scholar
  45. 45.
    Sung, W. and J.J. Morgan, 1981: Osidative removal of Mn(II) from solution catalyzed by the α -Fe0OH (lepidocrocite) surface. Geochim. et Cosmochim. Acta., (in press).Google Scholar
  46. 46.
    Nealson, K., 1978: The isolation and characterization of marine bacteria which catalize manganess oxidation. In: “Environmental Biochemistry and Geomicrobiology 3”, ( Krumbein, ed. ), Ann Arbor Science Publ. 847 pp.Google Scholar
  47. 47.
    Gardner, L.R., 1974: Organic versus inorganic trace metal complexes in sulfidic marine waters–some speculative calculations based on available stability constants. Geochim. et Cosmochim. Acta., 38, 1297–1302.CrossRefGoogle Scholar
  48. 48.
    Piper, D., 1971: The distribution of Co, Cr, Cu, Fe, Mn, Ni and Zn in Framvaren, a Norwegian anoxic fjord. Geochim. et Cosmochim. Acta., 35, 531–550.CrossRefGoogle Scholar
  49. 49.
    Shiozawa, T., K.Kawana, A. Hoshika, T. Tanimoto and 0. Takimura, 1977: Vertical distribution of heavy metals and its seasonal variations in Beppu Bay. J. of the Oceanogr. Soc. of Japan, 33, 350–356.Google Scholar
  50. 50.
    Robie, R.A., B.S. Hemingway and J.R. Fisher, 1978: Thermodynamic properties of minerals and related substances at 298.15 k and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geologic Survey Bulletin No. 1452, 457 pp.Google Scholar
  51. 51.
    Wagman, D.D., W.H. Evans, V.B. Parker, I. Halow, S.M. Bailey and R.H. Schwinn, 1968: Selected values of chemical thermodynamic properties. Pt. 3, Nat. Bur. Std. Tech. Note, 270–273, 264 pp.Google Scholar
  52. 52.
    Mills, K.C., 1974: Thermodynamic Data for Inorganic Sulphides, Selenides and Telluridge. Butterworths, London, 845 pp.Google Scholar
  53. 53.
    Jacobs, L. and S. Emerson, unpublished data.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Steven Emerson
    • 1
  • Lucinda Jacobs
    • 1
  • Brad Tebo
    • 2
  1. 1.School of OceanographyUniversity of WashingtonSeattleUSA
  2. 2.Scripps Institution of OceanographyUniversity of California — San DiegoLa JollaUSA

Personalised recommendations