Advertisement

Thermoelectric Power of Hg2.86AsF6

  • G. A. Scholz
  • W. R. Datars
  • D. Chartier
  • R. Gillespie

Abstract

Linear chain mercury compounds were investigated by measuring the thermoelectric power of Hg2.86AsF6. The temperature dependence of the thermopower above 100K along the â and \( \hat b \) directions exhibits a negative slope which indicates conduction by electrons along the mercury chains and a Fermi energy of 4.6 eV. The slope of the temperature dependence of the thermopower along the ĉ axis exhibits a positive slope indicating hole conduction along the â direction. A transition in the region 180–200 K is observed along the ĉ direction but not along the â direction. A large positive thermopower peak at 13 ± 3 K along both directions is considered to be due to phonon drag. Models are presented to explain the electrical conductivity.

Keywords

Fermi Energy Debye Temperature Thermoelectric Power Elemental Mercury Mercury Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.D. Brown, B.D. Cutforth, C.G. Davies, R.J. Gillespie, P.R. Ireland and J. Vekris, Can. J. Chem. 52, 791 (1974).CrossRefGoogle Scholar
  2. 2.
    B.D. Cutforth, Ph.D. Thesis, McMaster University (1976), unpublished.Google Scholar
  3. 3.
    B.D. Cutforth, W.R. Datars, R.J. Gillespie and A. van Schyndel, Adv. Chem. 150, 56 (1975).CrossRefGoogle Scholar
  4. 4.
    B.D. Cutforth, W.R. Datars, A. van Schyndel and R.J. Gillespie, Solid State Commun. 21, 377 (1977).CrossRefGoogle Scholar
  5. 5.
    E.S. Koteles, W.R. Datars, B.D. Cutforth and R.J. Gillespie, Solid State Commun. 20, 1129 (1976).CrossRefGoogle Scholar
  6. 6.
    E. Batalla, W.R. Datars, B.D. Cutforth and R.J. Gillespie, (to be published).Google Scholar
  7. 7.
    C.K. Chiang, R. Spal, A. Denestein, A.J. Heeger, N.D. Miro and A.G. iacDiarmid, Solid State Commun. 21, 197 (1977).CrossRefGoogle Scholar
  8. 8.
    D.L. Peebles, C.R. Chiang, M.J. Cohen, A.J. Heeger, N.D. Miro and A.G. MacDiarmid, Phys. Rev. 15, 4412 (1977).CrossRefGoogle Scholar
  9. 9.
    R.D. Barnard, “Thermoelectricity in Metals and Alloys”, (1972).Google Scholar
  10. 10.
    J.W. Christian, J.P. Jan, W.P. Pearson and I.M. Templeton, Proc. Roy. Soc. (London) A245, 213 (1958).CrossRefGoogle Scholar
  11. 11.
    W.B. Pearson, Solid State Physics (U.S.S.R.) 3, 1411 (1961).Google Scholar
  12. 12.
    R.P. Hubner, Solid State Physics 27, 63 (1972).CrossRefGoogle Scholar
  13. 13.
    A. van Schyndel, W.R. Datars, B.D. Cutforth and R.J. Gillespie, (to be published ) (1976).Google Scholar
  14. 14.
    I.I. Ziman, “Electrons and Phonons”, Clarendon Press, Oxford, (1960).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • G. A. Scholz
    • 1
  • W. R. Datars
    • 1
  • D. Chartier
    • 2
  • R. Gillespie
    • 2
  1. 1.Department of PhysicsMcMaster UniversityHamiltonCanada
  2. 2.Department of ChemistryMcMaster UniversityHamiltonCanada

Personalised recommendations