Skip to main content

Low-Temperature Thermopower and Other Transport Properties of Aluminium Containing Dilute Point Defects

  • Chapter

Abstract

We compare new experimental results of the low-temperature thermopower and of the low-field Hall effect (and magnetoresistance) of aluminium containing dilute point defects. The defects were either nonmagnetic impurities (Ge, Mg, Zn, Ga, or Cu) or Frenkel defects (FD, i.e. self-interstitials and vacancies) introduced by reactor irradiation at 4.6 K. Some of the results can be compared with 4 OPW calculations, which were performed using the realistic Al Fermi surface (FS) and tabulated pseudo-potentials and without adjusting any parameter.

The low-field Hall coefficient Ro at 4.6 K was always found to be consistent, even quantitatively, with the generalized Tsuji-formula, see below. The low-temperature thermopower S was shown to agree with the law S = AT+BT3 below about 6–8 K (measurement at 1.3 K<T<13 K, superconducting reference).

The diffusion thermopower coefficient A was essentially independent of the concentration of isolated FD or impurities, but changed drastically during FD agglomeration. This behaviour of A parallels that of Ro and demonstrates that the Al bandstructure always remained sufficiently unchanged by the defects. The different values of A or Ro as observed for different defect types are determined only by the different anisotropy (i.e. k→-dependence) of the relaxation time τk. This is all consistent with the Mott-formula for A. Both Ro and -A depended in about the same way on the defect type, but the “wrong” sign of A shows that A is determined by the energy dependence of vkτk (velocity vk) which overcompensates that of the FS area elements dS. Our 4 OPW calculations gave virtually quantitative agreement for Ro but not for A (many body effects?).

The phonon drag thermopower coefficient B behaved totally different for impurities and for FD. For impurities B was again independent of the defect concentration and determined only by the anisotropy of τk, and both Ro and B depended in about the same way on the defect type. This behaviour of B is in qualitative and even semi-quantitative agreement with the Bailyn-formula, and there is no evidence of “phony phonon drag”. In the FD case, however, B was approaching zero as a function of defect concentration and was independent of the anisotropy of τk. This anomalous behaviour obviously has to do with the exceptionally strong phonon scattering on the FD (resonance vibration modes).

This work was supported by the German Bundesministerium für Forschung und Technologie within the project “Nukleare Festkörperforschung.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Int. EPS Study Conf. on “Transport properties of normal metals and alloys below OD” in Cavtat near Dubrovnik, May 9–12, 1977.

    Google Scholar 

  2. P.E. Nielsen and P.L. Taylor, Phys. Rev. B10, 4061 (1974).

    Article  CAS  Google Scholar 

  3. C.R. Leavens and N.J. Laubitz, J. Phys. F6, 1851 (1976).

    Article  CAS  Google Scholar 

  4. K. Boning, K. Pfandner, P. Rosner, and M. Schlüter, J. Phys. F5, 1176 (1975).

    Article  Google Scholar 

  5. W. Kesternich, H. Ullmaier, and W. Schilling, J. Phys. F6, 1867 (1976).

    Article  CAS  Google Scholar 

  6. K. Böning, W. Mauer, K. Pfandner, and P. Rosner, Rad. Effects 29, 177 (1976).

    Article  Google Scholar 

  7. K. Böning, paper presented at the Conf., see Ref. 1; to be published.

    Google Scholar 

  8. N.W. Ashcroft, Phil. Mag. 8, 2055 (1963).

    Article  CAS  Google Scholar 

  9. J.R. Anderson and S.S. Lane, Phys. Rev. B2, 298 (1970).

    Article  Google Scholar 

  10. M.T. Robinson, USERDA report CONF - 751006 (1975), p. 1.

    Google Scholar 

  11. H.G. Haubold, in Ref. 10, p. 268.

    Google Scholar 

  12. A. Seeger, E. Mann, and R.v.Jan, J. Phys. Chem. Sol. 23, 639 (1962).

    Article  Google Scholar 

  13. B.v. Guérard and J. Peisl, in Ref. 10, p. 287 and to be published.

    Google Scholar 

  14. W. Mansel, H. Meyer, and G. Vogl, to appear in Rad. Effects.

    Google Scholar 

  15. W. Schilling, P. Ehrhardt, and K. Sonnenberg, in Ref. 10, p. 470.

    Google Scholar 

  16. A. Seeger, in Ref. 10, p. 493.

    Google Scholar 

  17. C.M. Hurd, The Hall Effect in Metals and Alloys, Plenum Press, New York, London (1972).

    Google Scholar 

  18. K. Böning, Phys. kondens, Materie 11, 177 (1970).

    Google Scholar 

  19. K. Böning, H.J. Fenzl, E. Olympios, J.M. Welter, and H. Wenzl, phys. stat. sol. 34, 395 (1969).

    Article  Google Scholar 

  20. K. Böning, H.J. Fenzl, J.M. Welter, and H. Wenzl, phys. stat. sol. 40, 609 (1970).

    Article  Google Scholar 

  21. K. Pfandner, K. Böning, and W. Brenig, solid state comm. 23, 31 (1977).

    Article  Google Scholar 

  22. K. Pfandner, Ph.D. thesis in preparation at the Techn. Universität Munchen; K. Pfandner, K. Böning, and W. Brenig, to be published.

    Google Scholar 

  23. R.S. Sorbello, J. Phys. F4, 503 (1974).

    Article  Google Scholar 

  24. J.P.G. Shepherd and W.L. Gordon, Phys. Rev. 169, 541 (1968).

    Article  CAS  Google Scholar 

  25. R.S. Sorbello, J. Phys. F4, 1665 (1974).

    Article  CAS  Google Scholar 

  26. G. Sieber, Ph.D. thesis, Techn. Universität München (1976).

    Google Scholar 

  27. G. Sieber, G. Wehr, and K. Böning, J. Phys. 23. G. Schmitt, Diplomarbeit (master’s thesis ), Universität Munchen (1976).

    Google Scholar 

  28. G. Sieber, G. Schmitt, K. Böning, S.Y. Wang to be published.

    Google Scholar 

  29. R.D. Barnard, Thermoelectricity in Metals and Alloys, Taylor and Francis LTD, London (1972).

    Google Scholar 

  30. P.L. Taylor, A Quantum Approach to the Solid State, Prentice Hall Inc., New Jersey (1970).

    Google Scholar 

  31. J.P. Jan, Can. J. Phys. 46, 1371 (1968).

    Article  Google Scholar 

  32. R.W. Shaw, Phys. Rev. 174, 769 (1968).

    Article  Google Scholar 

  33. M. Bailyn, Phys. Rev. 157, 480 (1967).

    Article  CAS  Google Scholar 

  34. A.M. Guénault, J. Phys. F1, 373 (1971).

    Article  Google Scholar 

  35. A.R. DeVroomen, C. van Barle, and A.J. Cuelenaere, Physica 26, 19 (1960).

    Article  CAS  Google Scholar 

  36. H.R. Schober, V.K. Tewary, and P.H. Dederichs, Z. Physik B21, 255 (1975).

    CAS  Google Scholar 

  37. K. Böning, G.S. Bauer, H.J. Fenzl, R. Scherm, and W. Kaiser, Phys. Rev. Lett. 38, 852 (1977).

    Article  Google Scholar 

  38. R.S. Averback, C.H. Stephan, and J. Bass, J. Low Temp. Phys. 12, 319 (1973).

    Article  CAS  Google Scholar 

  39. R.P. Huebener, Phys. Rev. 171, 634 (1968).

    Article  CAS  Google Scholar 

  40. T. Rybka and R.R. Bourassa, Phys. Rev. B8, 4449 (1973).

    Article  CAS  Google Scholar 

  41. S.Y. Wang, Master’s Thesis, University of Oklahoma (1976).

    Google Scholar 

  42. A.W. Dudenhoeffer and R.R. Bourassa, Phys. Rev. B5, 1651 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Böning, K. (1978). Low-Temperature Thermopower and Other Transport Properties of Aluminium Containing Dilute Point Defects. In: Blatt, F.J., Schroeder, P.A. (eds) Thermoelectricity in Metallic Conductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6830-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6830-5_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6832-9

  • Online ISBN: 978-1-4757-6830-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics