Present State of Experimental Knowledge on Thermopower of Metals at High Temperatures — Above 77 K

  • M. V. Vedernikov
  • A. T. Burkov


The present state of knowledge of thermoelectric properties of metals is characterized by an absence of general empirical relationships. It is rather difficult to give theoretical interpretation to a number of observed features of thermopower. In order to solve these problems a systematic study of thermopowers of all metals is necessary. In this paper the high temperature thermoelectric properties of all transition, rare earth and normal metals are considered together for the first time. The basic part of this paper is an analysis of the thermopower of solid polycrystalline metals in the magnetically disordered state. It is shown that the thermopower behaviour at high temperatures is often complicated and disagrees with predictions of simple models. The close similarity of thermopowers is revealed for metals which belong to the same group of the Periodic System. Both thermopower change at the structural transformations and the thermopower anisotropy for single crystals are discussed. The data on thermopowers of metals reviewed here can serve as a reliable base for theoretical interpretation. Last, a connection between the high temperature thermopower of metals and their electronic structure is discussed.*


Thermoelectric Property Normal Metal Generalize Curve Actinide Metal High Temperature Thermoelectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.V. Vedernikov, Advan. Phys. 18, 337 (1969).CrossRefGoogle Scholar
  2. 2.
    M.V. Vedernikov, A.T. Burkov, V.G. Dvunitkin, and N.I. Moreva, J. Less-Common Metals 52, 221 (1977).CrossRefGoogle Scholar
  3. 3.
    J. Nystrom, in “Landolt-Bornstein, Zahlenwerte und Funktionen”, edited by K.H. Hellwege (Springer, Berlin, 1959), vol. 2, part 6, p. 929.Google Scholar
  4. 4.
    R.P. Hubener, in “Solid State Physics”, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, N.Y. and London, 1972), vol. 27, p. 63.Google Scholar
  5. 5.
    A.D. Stewart and J.M. Anderson, Phys. Stat. Solidi B 45, K89 (1971).CrossRefGoogle Scholar
  6. 6.
    V.I. Spitsyn, V.E. Zinov’ev, P.V. Gel’d, and O.A. Balachovskiy, Dokl. Ak. Nauk SSSR 221, 145 (1975) - in Russian.Google Scholar
  7. 7.
    J.M. Ziman, Advan. Phys. 10, 1 (1961).CrossRefGoogle Scholar
  8. 8.
    F.J. Blatt, Hely. Phys. Acta 41, 693 (1968).Google Scholar
  9. 9.
    J.G. Cook, M.J. Laubitz, and M.P. Van der Meer, Can. J. Phys. 53, 486 (1975).CrossRefGoogle Scholar
  10. 10.
    J.G. Cook and M.P. Van der Meer, J. Phys. F: Metal Phys. 3, L130 (1973).CrossRefGoogle Scholar
  11. 11.
    J.G. Cook and M.J. Laubitz, Can. J. Phys. 54, 928 (1976).CrossRefGoogle Scholar
  12. 12.
    O.K. Kuvandikov, A.V. Cheremushkina, and R.P. Vasil’eva, Fiz. Metal. Metalloved. 34, 867 (1972) - in Russian.Google Scholar
  13. 13.
    J.G. Cook, M.J. Laubitz, and M.P. Van der Meer, J. Appl. Phys. 45, 510 (1974).CrossRefGoogle Scholar
  14. 14.
    M.V. Vedernikov, Prib. Techn. Eksper. No. 5, 209 (1975) - in Russian.Google Scholar
  15. 15.
    B. Bosacchi and R.P. Huebener, J. Phys. F: Metal Phys. 1, L27 (1971).CrossRefGoogle Scholar
  16. 16.
    T. Ricker and G. Schaumann, Phys. Kondens. Mater. 5, 31 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • M. V. Vedernikov
    • 1
  • A. T. Burkov
    • 1
  1. 1.A. F. Ioffe Physico-Technical InstituteLeningradUSSR

Personalised recommendations