Immunology pp 201-264 | Cite as

Antigen-Nonspecific Factors Elaborated by Macrophages Which Stimulate Lymphocytes

Interleukin-1
  • David D. Wood

Abstract

The essential role of macrophages in supporting lymphocyte responses in culture has been well established since the initial demonstration that neither antibody production nor T-cell proliferation takes place in the absence of macrophages (Mosier, 1967; Oppenheim et al., 1968). At least three functions of the macrophage have been described which contribute to the vigor of the immune response. The most easily demonstrated of these is a feeder layer effect which can be replaced almost entirely by the addition of 2-mercaptoethanol to the culture (Chen and Hirsch, 1972). It has been suggested that the mercaptoethanol replaces the macrophage by modifying some high-molecular-weight component present in fetal calf serum (Opitz et al., 1977) or by keeping glutathione reduced (Hoffeld and Oppenheim, 1980).

Keywords

Zinc Lymphoma Proline Charcoal Cesium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarden, L. A., et al., 1979, Revised nomenclature for antigen non-specific T cell proliferation and helper factors, J. Immunol. 123:2928.Google Scholar
  2. Abbott, J., Doyle, P. J., Ngiam, K., and Olson, C. L., 1981, Ontogeny of murine T lymphocytes. 1. Maturation of thymocytes induced in vitro by tumor necrosis factor-positive serum (TNF+), Cell Immunol. 57:237.PubMedCrossRefGoogle Scholar
  3. Amento, E. P., Kurnick, J. T., Epstein, A., and Krane, S. M., 1982a, Modulation of synovial cell products by a factor from a human cell line: T lymphocyte induction of a mononuclear cell factor, Proc. Natl. Acad. Sci. USA 79:5307.PubMedCrossRefGoogle Scholar
  4. Amento, E. P., Kurnick, J. T., and Krane, S. M., 1982b, Interleukin-1 production by a human monocyte cell line is induced by a T lymphocyte product, Immunobiology 163:276.CrossRefGoogle Scholar
  5. Atkins, E., and Francis, L., 1978, Pathogenesis of fever in delayed hypersensitivity: Factors influencing release of pyrogen-inducing lymphokines, Infect. Immun. 21:806.PubMedGoogle Scholar
  6. Atkins, E., Bodel, P., and Francis, L., 1967, Release of an endogenous pyrogen in vitro from rabbit mononuclear cells, J. Exp. Med. 126:357.PubMedCrossRefGoogle Scholar
  7. Atkins, E., Feldman, J. D., Francis, L., and Hursh, E., 1972, Studies on the mechanism of fever accompanying delayed hypersensitivity: The role of the sensitized lymphocyte, J. Exp. Med. 135:1113.PubMedCrossRefGoogle Scholar
  8. Atkins, E., Francis, L., and Bernheim, H. A., 1978, Pathogenesis of fever in delayed hypersensitivity: Role of monocytes, Infect. Immun. 21:813.PubMedGoogle Scholar
  9. Atkins, E., Askenase, P. W., Francis, L., and Bernheim, H. A., 1980, Release of an endogenous pyrogen from guinea pig leukocytes, J. Immunol. 125:2069.PubMedGoogle Scholar
  10. Bach, F. H., Alter, B. J., Solliday, S., Zoschke, D. C., and Janis, M., 1970, Lymphocyte reactivity in vitro. II. Soluble reconstituting factor permitting response of purified lymphocytes, Cell. Immunol. 1:219.PubMedCrossRefGoogle Scholar
  11. Balow, J. E., and Rosenthal, A. S., 1973, Glucocorticoid suppression of macrophage migration inhibitory factor, J. Exp. Med. 137:1031.PubMedCrossRefGoogle Scholar
  12. Baracos, V., Rodemann, H. P., Dinarello, C. A., and Goldberg, A. L., 1983, Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). N. Engl. J. Med. 308:553.PubMedCrossRefGoogle Scholar
  13. Beeson, P. B., 1948, Temperature-elevating effects of a substance obtained from polymorphonuclear leukocytes, J. Clin. Invest. 27:524.PubMedGoogle Scholar
  14. Beller, D. I., and Unanue, E. R., 1977, Thymic maturation in vitro by a secretory product from macrophages, J. Immunol. 118:1780.PubMedGoogle Scholar
  15. Beller, D. I., and Unanue, E. R., 1978, Thymic macrophages modulate one stage of T cell differentiation in vitro, J. Immunol. 121:1861.PubMedGoogle Scholar
  16. Beller, D. I., and Unanue, E. R., 1979, Evidence that thymocytes require at least two distinct signals to proliferate, J. Immunol. 123:2890.PubMedGoogle Scholar
  17. Ben-Ezra, D., and Gery, I., 1979, Stimulation of keratoycte metabolism by products of lymphoid cells, Invest. Ophthalmol. Vis. Sci. 18:317.Google Scholar
  18. Bendtzen, K., 1981, Induction of antigen-specific immunological unresponsiveness by inhibitors of human lymphocyte-activating factor, Scand. J. Immunol. 14:427.PubMedCrossRefGoogle Scholar
  19. Benson, M. D., and Aldo-Benson, M., 1979, Effect of purified protein SAA on immune response in vitro: Mechanisms of suppression, J. Immunol. 122:2077.PubMedGoogle Scholar
  20. Benson, M. D., and Kleiner, E., 1980, Synthesis and secretion of serum amyloid protein A (SAA) by hepatocytes in mice treated with casein, J. Immunol. 124:495.PubMedGoogle Scholar
  21. Benson, M. D., Scheinberg, M. A., Shirahama, T., Cathcart, E. S., and Skinner, M., 1977, Kinetics of serum amyloid protein A in casein-induced murine amyloidosis, J. Clin. Invest. 59:412.PubMedCrossRefGoogle Scholar
  22. Ben-Zvi, A., Mizel, S. B., and Oppenheim, J. J., 1981, Generation of human peripheral blood stable E-rosette-forming T cells by interleukin 1, Clin. Immunol. Immunopathol. 19:330.PubMedCrossRefGoogle Scholar
  23. Bernheim, H. A., and Kluger, M. J., 1976, Effect of drug-induced antipyresis on survival, Science 16:237.CrossRefGoogle Scholar
  24. Bernheim, H. A., Block, L. H., and Atkins, E., 1979, Fever: Pathogenesis, pathophysiology, and purpose, Ann. Intern. Med. 91:261.PubMedCrossRefGoogle Scholar
  25. Bernheim, H. A., Block, L. H., Francis, L., and Atkins, E., 1980, Release of endogenous pyrogen-activating factor from concanavalin A-stimulated human lymphocytes, J. Exp. Med. 152:1811.PubMedCrossRefGoogle Scholar
  26. Biozzi, G., Benacerraf, B., and Halpern, B. N., 1955, The effect of Salmonella typhimurium and its endotoxin on the phagocytic activity of the reticuloendothelial system in mice, Br. J. Exp. Pathol. 36:226.PubMedGoogle Scholar
  27. Block, L. H., Georgopoulos, A., Mayer, P., and Drews, J., 1978, Nonspecific resistance to bacterial infection: Enhancement by ubiquinone-8, J. Exp. Med. 148:1228.PubMedCrossRefGoogle Scholar
  28. Blomgren, H., 1974, Steroid sensitivity of the response of human lymphocytes to phytohemag-glutinin and pokeweed mitogen: Role of phagocytic cells, Scand. J. Immunol. 3:655.PubMedCrossRefGoogle Scholar
  29. Blyden, G., and Handschumacher, R. E., 1977, Purification and properties of human lymphocyte activating factor (LAF), J. Immunol. 118:1631.PubMedGoogle Scholar
  30. Bodel, P., 1970, Studies on the mechanism of endogenous pyrogen production. I. Investigation of new protein synthesis in stimulated human blood leukocytes, Yale J. Biol. Med. 43:145.PubMedGoogle Scholar
  31. Bodel, P., 1974, Studies on the mechanism of endogenous pyrogen production. III. Human blood monocytes, J. Exp. Med. 140:954.PubMedCrossRefGoogle Scholar
  32. Bodel, P., 1975, Colchicine stimulation of pyrogen production by human blood monocytes, J. Exp. Med. 143:1015.CrossRefGoogle Scholar
  33. Bodel, P., 1978, Spontaneous pyrogen production by mouse histiocytic and myelomonocytic tumor cell lines in vitro, J. Exp. Med. 147:1503.Google Scholar
  34. Bodel, P., and Hollingsworth, J. W., 1968, Pyrogen release from human synovial exudate cells, Br. J. Exp. Pathol. 49:11.PubMedGoogle Scholar
  35. Bodel, P., and Miller, H., 1977, Differences in pyrogen production of mononuclear phagocytes and by fibroblasts or HeLa cells, J. Exp. Med. 145:607.PubMedCrossRefGoogle Scholar
  36. Bornstein, D. L., and Walsh, E. C., 1978, Endogenous mediators of the acute-phase reaction. I. Rabbit granulocytic pyrogen and its chromatographic subfractions, J. Lab. Clin. Med. 91:236.PubMedGoogle Scholar
  37. Bradley, L. M., and Mishell, R. I., 1981, Differential effects of glucocorticosteroids on the functions of helper and suppressor T lymphocytes, Proc. Natl. Acad. Sci. USA 78:3155.PubMedCrossRefGoogle Scholar
  38. Braun, W., and Nakano, M., 1967, Antibody formation: Stimulation by polyadenylic and poly-cytidylic acids, Science 157:819.PubMedCrossRefGoogle Scholar
  39. Broxmeyer, H. E., Smithyman, A., Eger, R. R., Meyers, P. A., and de Sousa, M., 1978, Identification of lactoferrin as the granulocyte-derived inhibitor of colony-stimulating activity production, J. Exp. Med. 148:1052.PubMedCrossRefGoogle Scholar
  40. Cabanac, M., Stolwijk, J. A. J., and Hardy, J. D., 1968, Effect of temperature and pyrogens on single-unit activity in the rabbit’s brain stem, J. Appl. Physiol. 24:645.PubMedGoogle Scholar
  41. Calderon, J., Kiely, J. M., Lefko, J. L., and Unanue, E. R., 1975, The modulation of lymphocyte functions by molecules secreted by macrophages. I. Description and partial biochemical analysis, J. Exp. Med. 142:151.PubMedCrossRefGoogle Scholar
  42. Cameron, P. M., and Wood, D. D., 1978, Response of CBA/N mice to human B cell activating factor, Cell Immunol. 38:176.PubMedCrossRefGoogle Scholar
  43. Cebula, T. A., Hanson, D. F., Moore, D. M., and Murphy, P. A., 1979, Synthesis of four pyrogens by rabbit macrophages, J. Lab. Clin. Med. 94:95.PubMedGoogle Scholar
  44. Chao, P., Francis, L., and Atkins, E., 1977, The release of endogenous pyrogen from guinea pig leukocytes in vitro, J. Exp. Med. 145:1288.CrossRefGoogle Scholar
  45. Charon, J. A., Luger, T. A., Mergenhageri, S. E., and Oppenheim, J. J., 1982, Increased thymocyte-activating factor in human gingival fluid during gingival inflammation, Infect. Immun. 38:1190.PubMedGoogle Scholar
  46. Chedid, L., Audibert, F., Bona, C., Damais, C., Parant, F., and Parant, M., 1975, Biological activities of endotoxins detoxified by alkylation, Infect. Immun. 12:714.PubMedGoogle Scholar
  47. Chen, C., and Hirsch, J. G., 1972, The effects of mercaptoethanol and of peritoneal macrophages on the antibody forming capacity of nonadherent mouse spleen cells in vitro, J. Exp. Med. 136:604.PubMedCrossRefGoogle Scholar
  48. Chen, D.-M., and DiSabato, G., 1976, Further studies on the thymocyte stimulating factor, Cell. Immunol. 22:211.PubMedCrossRefGoogle Scholar
  49. Chvapil, M., 1976, Effect of zinc on cells and biomembranes, Med. Clin. North Am. 60:799.PubMedGoogle Scholar
  50. Chvapil, M., Stankova, L., Zukoski, C., and Zukoski, C., 1977, Inhibition of some functions of polymorphonuclear leukocytes by in vitro zinc, J. Lab. Clin. Med. 89:135.PubMedGoogle Scholar
  51. Claesson, M. H., Whittingham, S., Rodger, M. B., and Burgess, A. W., 1977, Colony growth of human T lymphocytes in agar: Effect of a soluble factor from adherent cells, Eur. J. Immunol. 7:608.PubMedCrossRefGoogle Scholar
  52. Clark, I. A., Virelizier, J.-L., Carswell, E. A., and Wood, P. R., 1981, Possible importance of mac-rophage-derived mediators in acute malaria, Infect. Immun. 32:1058.PubMedGoogle Scholar
  53. Cohen, A. S., Gross, E., and Shirahama, I., 1965, The light and electron microscopic autoradiographic demonstration of local amyloid formation in spleen expiants, Am. J. Pathol. 47:1079.PubMedGoogle Scholar
  54. Cohen, J. J., and Claman, H. N., 1971, Thymus-marrow immunocompetence. V. Hydrocortisone-resistant cells and processes in the hemolytic antibody response of mice, J. Exp. Med. 133:1026.PubMedCrossRefGoogle Scholar
  55. Cone, R. E., and Johnson, A. G., 1972, Regulation of the immune system by synthetic polynucleotides. IV. Amplification of proliferation of thymus-influenced lymphocytes, Cell. Immunol. 3:283.PubMedCrossRefGoogle Scholar
  56. Conlon, P. J., Henney, C. S., and Gillis, S., 1982, Cytokine-dependent thymocyte responses: Characterization of IL-1 and IL-2 target subpopulations and mechanisms of action, J. Immunol. 128:797.PubMedGoogle Scholar
  57. Cooper, K. E., Cranston, W. I., and Snell, E. S., 1964, Temperature regulation during fever in man, Clin. Sci. 27:345.PubMedGoogle Scholar
  58. Cooper, K. E., Cranston, W. I., and Honour, J., 1967, Observations on the site and mode of action of pyrogens in the rabbit brain, J. Physiol. (London) 191:325.Google Scholar
  59. Covert, J. B., and Reynolds, W. W., 1977, Survival value of fever in fish, Nature (London) 267:43.CrossRefGoogle Scholar
  60. Crabtree, G. R., Gillis, S., Smith, K. A., and Munck, A., 1980, Mechanisms of glucocorticoid-induced immunosuppression: Inhibitory effects on expression of Fc receptors and production of T-cell growth factor, J. Steroid Biochem. 12:445.PubMedCrossRefGoogle Scholar
  61. Damais, C., Riveau, G., Parant, M., Gerota, J., and Chedid, J., 1982, Production of lymphocyte activating factor in the absence of endogenous pyrogen by rabbit or human leukocytes stimulated by a muramyl dipeptide derivative, Int. J. Immunopharmacol. 4:451.PubMedCrossRefGoogle Scholar
  62. Dayer, J. M., Krane, S. M., Russell, R. G. G., and Robinson, D. R., 1976, Production of collagenase and prostaglandins by isolated adherent rheumatoid synovial cells, Proc. Natl. Acad. Sci. USA 73:945.PubMedCrossRefGoogle Scholar
  63. Dayer, J. M., Robinson, D. R., and Krane, S. M., 1977a, Prostaglandin production by rheumatoid synovial cells: Stimulation by a factor from human mononuclear cells, J. Exp. Med. 145:1399.PubMedCrossRefGoogle Scholar
  64. Dayer, J. M., Russell, R. G. G., and Krane, S. M., 1977b, Collagenase production by rheumatoid synovial cells: Stimulation by a human lymphocyte factor, Science 195:181.PubMedCrossRefGoogle Scholar
  65. Dayer, J. M., Bread, J., Chess, L., and Krane, S. M., 1979, Participation of monocyte-macrophages and lymphocytes in the production of a factor that stimulates collagenase and prostaglandin release by rheumatoid synovial cells, J. Clin. Invest. 64:1386.PubMedCrossRefGoogle Scholar
  66. Dayer, J. M., Goldring, S. R., Robinson, D. R., and Krane, S. M., 1980a, Cell-cell interactions and collagenase production, in: Collagenase in Normal and Pathological Connective Tissues (D. E. Wool-ley and J. M. Evanson, eds.), pp. 83–104, Wiley, New York.Google Scholar
  67. Dayer, J. M., Passwell, J. H., Schneeberger, E. E., and Krane, S. M., 1980b, Interactions among rheumatoid synovial cells and monocyte-macrophages: Production of collagenase-stimulating factor by human monocytes exposed to concanavalin A or immunoglobulin Fc fragments, J. Immunol. 124:1712.PubMedGoogle Scholar
  68. Dayer, J. M., Stephenson, M. L., Schmidt, E., Karge, W., and Krane, S. M., 1981, Purification of a factor from human blood monocyte-macrophages which stimulates the production of collagenase and prostaglandin E2 by cells cultured from rheumatoid synovial tissues, FEBS Lett. 124:253.PubMedCrossRefGoogle Scholar
  69. Dempsey, R. A., Dinarello, C. A., Mier, J. W., Rosenwasser, L. J., Allegretta, M., Brown, T. E., and Parkinson, D. R., 1982, The differential effects of human leukocytic pyrogen/lymphocyte-activating factor, T cell growth factor, and interferon on human natural killer activity, J. Immunol. 129:2504.PubMedGoogle Scholar
  70. Deshmukh-Phadke, K., Lawrence, M., and Nanda, S., 1978, Synthesis of collagenase and neutral proteases by articular chondrocytes: Stimulation by a macrophage-derived factor, Biochem. Biophys. Res. Commun. 85:490.PubMedCrossRefGoogle Scholar
  71. Deshmukh-Phadke, K., Nanda, S., and Lee, K., 1980, Macrophage factor that induces neutral protease secretion by normal rabbit chondrocytes, Eur. J. Biochem. 104:175.PubMedCrossRefGoogle Scholar
  72. Diamantstein, T., and Ulmer, A., 1976, Two distinct lymphocyte-stimulating soluble factors (LAF) released from murine peritoneal cells. I. The cellular source and the effect of cGMP on their release, Immunology 30:741.PubMedGoogle Scholar
  73. Dimitriu, A., and Fauci, A. S., 1978, Activation of human B lymphocytes. IX. Modulation of antibody by products of activated macrophages, J. Immunol. 120:1818.PubMedGoogle Scholar
  74. Dinarello, C. A., 1979, Production of endogenous pyrogen, Fed. Proc. 38:52.PubMedGoogle Scholar
  75. Dinarello, C. A., 1981, Demonstration of a human pyrogen-inducing factor during mixed leukocyte reactions, J. Exp. Med. 153:1215.PubMedCrossRefGoogle Scholar
  76. Dinarello, C. A., and Wolff, S. M., 1977, Partial purification of human leukocytic pyrogen, Inflammation (N.Y.) 2:179.CrossRefGoogle Scholar
  77. Dinarello, C. A., and Wolff, S. M., 1979, Mechanisms in the production of fever in humans, Semin. Infect. Dis. 2:173.Google Scholar
  78. Dinarello, C. A., Bodel P., and Atkins, E., 1968, The role of the liver in the production of fever and in pyrogenic tolerance, Trans. Assoc. Am. Physicians 81:334.PubMedGoogle Scholar
  79. Dinarello, C. A., Goldin, N. P., and Wolff, S. M., 1974, Demonstration and characterization of two distinct human leukocytic pyrogens, J. Exp. Med. 139:1369.PubMedCrossRefGoogle Scholar
  80. Dinarello, C. A., Renfer, L., and Wolff, S. M., 1977, The production of antibody against human leukocytic pyrogen, J. Clin. Invest. 60:465.PubMedCrossRefGoogle Scholar
  81. Dinarello, C. A., Rosenwasser, L. J., and Wolff, S. M., 1981, Demonstration of a circulating suppressor factor of thymocyte proliferation during endotoxin fever in humans, J. Immunol. 127:2517.PubMedGoogle Scholar
  82. Dinarello, C. A., Bendtzen, K., and Wolff, S. M., 1982, Studies on the active site of human leukocytic pyrogen, Inflammation 6:63.PubMedCrossRefGoogle Scholar
  83. Dinarello, C. A., Marnoy, S. O., and Rosenwasser, L. J., 1983, Role of arachidonate metabolism in the immunoregulatory function of human leukocytic pyrogen/lymphocyte-activating factor/interleukin-1, J. Immunol. 130:890.PubMedGoogle Scholar
  84. Dingle, J. T., Saklatvala, J., Hembry, R., Tyler, J., Fell, H. B., and Jubb, R., 1979, A cartilage catabolic factor from synovium, Biochem. J. 184:177.PubMedGoogle Scholar
  85. DiSabato, G., Chen, D.-M., and Erickson, J. W., 1975, Production by murine spleen cells of activity stimulating the PHA-responsiveness of thymus lymphocytes, Cell. Immunol. 17:495.CrossRefGoogle Scholar
  86. DiSabato, G., Moraes, E. K., and Altin, M., 1979, Effect of thymocyte-stimulating factor-containing supernatants on the surface antigens of murine thymocytes, Cell. Immunol. 44:252.CrossRefGoogle Scholar
  87. Duff, G. W., and Durum, S., 1983, Fever and immunoregulation. II. Are the pyrogenic and mitogenic actions of interleukin-1 related? Nature (London) 304:449.CrossRefGoogle Scholar
  88. Duncan, R. L., Jr., and McArthur, W. P., 1981, Lactoferrin-mediated modulation of mononuclear cell activities. 1. Suppression of the murine in vitro primary antibody response, Cell. Immunol. 63:308.PubMedCrossRefGoogle Scholar
  89. Durum, S. K., and Gershon, R. K., 1982, Interleukin-1 can replace the requirement for I-A-positive cells in the proliferation of antigen-primed T cells, Proc. Natl. Acad. Sci. USA 79:4747.PubMedCrossRefGoogle Scholar
  90. Economou, J. S., and Shin, H. S., 1978, Lymphocyte-activating factor. I. Generation and physicochemical characterization, J. Immunol. 21:1446.Google Scholar
  91. Eddington, C. L., Upchurch, H. F., and Kampschmidt, R. F., 1972, Quantitation of plasma α2-AP globulin before and after stimulation with leukocyte extracts, Proc. Soc. Exp. Biol. Med. 139:565.PubMedCrossRefGoogle Scholar
  92. Efremov, O. M., Sorokin, A. V., and El’kina, O. A., 1978, Formation of endogenous pyrogen by bone marrow cells, Byull. Eksp. Biol. Med. 85:17.CrossRefGoogle Scholar
  93. Eisenman, J. S., and Jackson, D. C., 1967, Thermal response patterns of septal and preoptic neurons in cats, Exp. Neurol. 19:33.PubMedCrossRefGoogle Scholar
  94. Erb, P., and Feldmann, M., 1975a, The role of macrophages in the generation of T-helper cells. I. The requirement for macrophages in helper cell induction and characteristics of the macrophage T-cell interaction, Cell. Immunol. 19:356.PubMedCrossRefGoogle Scholar
  95. Erb, P., and Feldmann, M., 1975b, The role of macrophages in the generation of T-helper cells. III. Influence of macrophage-derived factors in helper cell induction, Eur. J. Immunol. 5:759.PubMedCrossRefGoogle Scholar
  96. Erb, P., Vogt, P., Meier, B., and Feldmann, M., 1977, The role of macrophages in the generation of T helper cells. V. Evidence for differential activation of short-lived T1 and long-lived T2 lymphocytes by the macrophage factors GRF and NMF, J. Immunol. 119:206.PubMedGoogle Scholar
  97. Farr, A. G., Dorf, M. E., and Unanue, E. R., 1977, Secretion of mediators following T lymphocyte-macrophage interaction is regulated by the major histocompatibility complex, Proc. Natl. Acad. Sci. USA 74:3542.PubMedCrossRefGoogle Scholar
  98. Farrar, J. J., 1974, In vitro reconstitution of T cell deficient mouse spleen cells by cocultivation with human lymphocytes, J. Immunol. 112:1613.PubMedGoogle Scholar
  99. Farrar, J. J., 1975, The xenogeneic effect. I. Antigen and mitogen-stimulated human lymphocytes produce a non-antigen-specific factor which reconstitutes the antibody response of T-cell deficient mouse spleen cells, J. Immunol. 115:1295.PubMedGoogle Scholar
  100. Farrar, J. J., Mizel, S. B., Fuller-Bonar, J., Hilfiker, M. L., and Farrar, W. L., 1980, Lipopolysaccharide mediated adjuvanticity: Effect of lipopoly saccharide on the production of thymus derived growth factor (interleukin 2), in: Microbiology1980 (D. Schlessinger, ed.), p. 36, American Society of Microbiology, Washington, D.C.Google Scholar
  101. Farrar, W. L., Mizel, S. B., and Farrar, J. J., 1980, Participation of lymphocyte activating factor (interleukin 1) in the induction of cytotoxic T cell responses, J. Immunol. 124:1371.PubMedGoogle Scholar
  102. Farrar, W. L., Johnson, H. M., and Farrar, J. J., 1981, Regulation of the production of immune interferon and cytotoxic T lymphocyte by interleukin-2, J. Immunol. 126:1125.Google Scholar
  103. Finelt, M., and Hoffmann, M. K., 1979, A human monocyte function test: Release of B cell differentiation factor, Clin. Immunol. Immunopathol. 12:281.PubMedCrossRefGoogle Scholar
  104. Finke, J. H., Sharma, S. D., and Scott, J. W., 1981, Generation of alloreactive cytotoxic T lymphocytes: Production of T cell and Mø helper factors in addition to IL-1 and IL-2 by peritoneal cells from mice immunized to Listeria monocytogenes, J. Immunol. 127:2354.PubMedGoogle Scholar
  105. Fontana, A., Hengartner, H., Weber, E., Fehr, K., Grob, P. J., and Cohen, G., 1982a, Interleukin-1 activity in the synovial fluid of patients with rheumatoid arthritis, Rheumatol. Int. 2:49.PubMedCrossRefGoogle Scholar
  106. Fontana, A., Kristensen, F., Dubs, R., Gemsa, D., and Weber, E., 1982b, Production of prostaglandin E and interleukin-1-like factor by cultured astrocytes and C6 glioma cells, J. Immunol. 129:2413.PubMedGoogle Scholar
  107. Galili, U., Rosenthal, L., and Klein, E., 1981, Activated T cells in the synovial fluid of arthritic patients. II. In vitro activation of the autologous blood lymphocytes, J. Immunol. 127:430.PubMedGoogle Scholar
  108. Gery, I., 1982, Production and assay of interleukin-1 (IL-1) in: Isolation, Characterization, and Utilization of T Lymphocyte Clones (C. G. Fathman and F. Fitch, eds.), pp.41–56, Academic Press, New York.Google Scholar
  109. Gery, I., and Handschumacher, R. E., 1974, Potentiation of the T lymphocyte response to mitogens. III. Properties of the mediator(s) from adherent cells, Cell. Immunol. 11:162.PubMedCrossRefGoogle Scholar
  110. Gery, I., and Waksman, B. H., 1972, Potentiation of the T-lymphocyte response to mitogens. II. The cellular source of potentiating mediator(s), J. Exp. Med. 136:143.PubMedCrossRefGoogle Scholar
  111. Gery, I., Gershon, R. K., and Waksman, B. H., 1972, Potentiation of the T-lymphocyte response to mitogens. I. The responding cell, J. Exp. Med. 136:128.PubMedCrossRefGoogle Scholar
  112. Gery, I., Davies, P., Derr, J., Krett, N., and Barranger, J. A., 1981a, Relation between production and release of lymphocyte activating factor (interleukin-1) by murine macrophages. I. Effects of various agents, Cell. Immunol. 64:293.PubMedCrossRefGoogle Scholar
  113. Gery, I., Seminara, D., Derr, J., and Barranger, J. A., 1981b, Production and release of lymphocyte activating factor (interleukin-1) by human monocytes and their derived macrophages, in: Mechanisms of Lymphocyte Activation (K. Resch and H. Kirchner, eds.), pp. 541–543, Elsevier/North-Holland, Amsterdam.Google Scholar
  114. Gillis, S., and Mizel, S. B., 1981, T cell lymphoma model for the analysis of interleukin-1 mediated T cell activation, Proc. Natl. Acad. Sci. USA 78:113.CrossRefGoogle Scholar
  115. Gillis, S., Smith, K. A., and Watson, J., 1980, Biochemical characterization of lymphocyte regulatory molecules. II. Purification of a class of rat and human lymphokines, J. Immunol. 124:1954.PubMedGoogle Scholar
  116. Glaser, M., and Nelken, D., 1972, Inhibitory effect of α-globulin on the second set allograft reaction, Proc. Soc. Exp. Biol. Med. 140:996.PubMedCrossRefGoogle Scholar
  117. Goodman, M. G., Chenoweth, D. E., and Weigle, W. O., 1982, Induction of interleukin-1 secretion and enhancement of humoral immunity by binding of human C5a to macrophage surface C5a receptors, J. Exp. Med. 156:912.PubMedCrossRefGoogle Scholar
  118. Goodrum, K. J., and Berry, L. J., 1979, The use of Reuber hepatoma cells for the study of a lipopolysaccharide-induced macrophage factor, Lab. Invest. 41:174.PubMedGoogle Scholar
  119. Gorczynski, R. M., 1977, Role of macrophage-derived factors in generation of cytotoxic and antibody responses, Scand. J. Immunol. 6:665.PubMedCrossRefGoogle Scholar
  120. Gorczynski, R. M., and Price, G. B., 1979, The role of macrophages in stimulation of immune induction and myelopoiesis. II. Analysis of genetic restrictions involved in the stimulation of granulocyte colony precursors or mature lymphocytes using factors prepared from different recombinant inbred strains of mice, Immunopharmacology. 1:187.PubMedCrossRefGoogle Scholar
  121. Gowen, M., Wood, D. D., Ihrie, E. J., Meats, J. E., and Russell, R. G. G., 1985a, Stimulation by human interleukin-1 of cartilage breakdown and production of collagenase and proteoglycanase by human chondrocytes but not by human osteoblasts in vitro, Biochim. Biophys. Acta, in press.Google Scholar
  122. Gowen, M., Wood, D. D., Ihrie, E. J., McGuire, M. K. B., and Russell, R. G. G., 1985b, An interleukin-1-like factor stimulates bone resorption in vitro, Nature (London), in press.Google Scholar
  123. Grabner, G., Luer, T. A., Smolin, G., and Oppenheim, J. J., 1982, Corneal epithelial cell-derived thymocyte-activating factor (CETAF), Invest. Ophthalmol. Vis. Sci. 23:757.PubMedGoogle Scholar
  124. Grieger, T. A., and Kluger, M. J., 1978, Fever and survival: The role of serum iron, J. Physiol. (London) 279:187.Google Scholar
  125. Haeseler, F., Bodel, P., and Atkins, E., 1977, Characteristics of pyrogen production by isolated rabbit Kupffer cells in vitro, J. Reticuloendothelial Soc. 22:569.Google Scholar
  126. Hanson, D. F., Murphy, P. A., and Windle, B. E., 1980, Failure of rabbit neutrophils to secrete endogenous pyrogen when stimulated with staphylococci, J. Exp. Med. 151:1360.PubMedCrossRefGoogle Scholar
  127. Hanson, D. F., Murphy, P. A., Silicano, R., and Shin, H. S., 1983, The effect of temperature on the activation of thymocytes by interleukin-I and II, J. Immunol. 130:216.PubMedGoogle Scholar
  128. Hardy, J. D., Hellon, R. F., and Sutherland, K., 1964, Temperature-sensitive neurons in the dog’s hypothalamus, J. Physiol. (London) 173:242.Google Scholar
  129. Harwell, L., Kappler, J. W., and Marrack, P., 1976, Antigen-specific and nonspecific mediator(s) of T cell/B cell cooperation. III. Characterization of the nonspecific mediator(s) from different sources, J. Immunol. 116:1379.PubMedGoogle Scholar
  130. Hoffeld, J. T., and Oppenheim, J. J., 1980, Enhancement of the primary antibody response by 2-mercaptoethanol is mediated by its action on glutathione in the serum, Eur. J. Immunol. 10:391.PubMedCrossRefGoogle Scholar
  131. Hoffmann, M. K., 1980, Macrophages and T cells control distinct phases of B cell differentiation in the humoral immune response in vitro, J. Immunol. 125:2076.PubMedGoogle Scholar
  132. Hoffmann, M. K., and Watson, J., 1979, Helper T cell-replacing factors secreted by thymus-derived cells and macrophages: Cellular requirements for B cell activation and synergistic properties, J. Immunol. 122:1371.PubMedGoogle Scholar
  133. Hoffmann, M. K., Hammerling, U., Simon, M., and Oettgen, H. F., 1976, Macrophage requirements of CR- and CR+ B lymphocytes for antibody production in vitro, J. Immunol. 116:1447.PubMedGoogle Scholar
  134. Hoffmann, M. K., Oettgen, H. F., Old, L. J., Chin, A. F., and Hammerling, U., 1977, Endotoxin-induced serum factor controlling differentiation of bone marrow derived lymphocytes, Proc. Natl. Acad. Sci. USA 74:1200.PubMedCrossRefGoogle Scholar
  135. Hoffmann, M. K., Oettgen, H. F., Old, L. J., Mittler, R. S., and Hammerling, U., 1978, Induction and immunological properties of tumor necrosis factor, J. Reticuloendothelial Soc. 23:307.Google Scholar
  136. Hoffmann, M. K., Koenig, S., Mittler, R. S., Oettgen, H. F., Ralph, P., Galanos, C., and Hammerling, U., 1979, Macrophage factor controlling differentiation of bone marrow derived cells, J. Immunol. 122:497.PubMedGoogle Scholar
  137. Huybrechts-Godin, G., Hauser, P., and Vaes, G., 1979, Macrophage-fibroblast interactions in collagenase production and cartilage destruction, Biochem. J. 184:643.PubMedGoogle Scholar
  138. Igarashi, T., Okada, M., Kishimoto, T., and Yamamura, Y., 1977, In vitro induction of polyclonal killer T cells with 2-mercaptoethanol and the essential role of macrophages in this process, J. Immunol. 118:1697.PubMedGoogle Scholar
  139. Igarashi, T., Rodrigues, D., and Ting, C., 1979, Studies of the mechanisms for the induction of in vitro tumor immunity. IV. Enhancement of the in vitro generation of secondary cell-mediated cytotoxic response by normal peritoneal macrophages and their culture supernatants, J. Immunol. 122:1519.PubMedGoogle Scholar
  140. Ihrie, E. J., and Wood, D. D., 1984, Heterogeneity of human interleukin-1.I. Biochemical characterization, submitted to J. Immunol.Google Scholar
  141. Iribe, H., Koga, T., Onoue, K., Kotani, S., Kusumoto, S., and Shiba, T., 1981, Macrophage-stimulating effect of a synthetic muramyl dipeptide and its adjuvant-active and -inactive analogs for the production of T-cell activating monokines, Cell Immunol. 64:73.PubMedCrossRefGoogle Scholar
  142. Iribe, H., Koga, T., and Onoue, K., 1982, Production of T-cell activating monokine of guinea pig macrophages induced by MDP and partial characterization of the monokine, J. Immunol. 129:1029.PubMedGoogle Scholar
  143. Ise, K., Nakamura, S., Ohkawara, S., and Yoshinaga, M., 1982, DNA synthesis-potentiating activity on mouse thymocytes of synovial fluid of rheumatoid arthritis patients, Acta Pathol. Jpn. 32:491.PubMedGoogle Scholar
  144. Jalkanen, M., 1981, Connective tissue activating macromolecules in macrophage culture medium, Connect. Tissue Res. 9:19.PubMedCrossRefGoogle Scholar
  145. Jasin, H. E., and Dingle, J. T., 1981, Human mononuclear cell factors mediate cartilage matrix degradation through chondrocyte activation, J. Clin. Invest. 68:571.PubMedCrossRefGoogle Scholar
  146. Kammer, G. M., and Unanue, E. R., 1980, Accessory cell requirement in the proliferative response of T lymphocytes to hemocyanin, Clin. Immunol. Immunopathol. 15:434.PubMedCrossRefGoogle Scholar
  147. Kampschmidt, R. F., 1979, Role of RES and leukocytic endogenous mediator in iron, zinc and copper metabolism, in: Macrophages and Lymphocytes: Nature, Functions and Interaction (M. R. Escobar and H. Friedmann, eds.), pp. 402–411, Plenum Press, New York.Google Scholar
  148. Kampschmidt, R. F., 1982, Leukocytic endogenous mediator/endogenous pyrogen, in: Infection: The Physiologic and Metabolic Responses of the Host (M. C. Powanda and P. G. Canonics, eds.), pp. 505–541, Elsevier, New York.Google Scholar
  149. Kampschmidt, R. F., and Pulliam, L. A., 1975, Stimulation of antimicrobial activity in the rat with leukocytic endogenous mediator, J. Reticuloendothelial Soc. 17:162.Google Scholar
  150. Kampschmidt, R. F., and Upchurch, H. F., 1969a, Lowering of plasma iron concentration in the rat with leukocytic extracts, Am. J. Physiol. 216:1287.PubMedGoogle Scholar
  151. Kampschmidt, R. F., and Upchurch, H. F., 1969b, Some effects of endotoxin and leukocytic pyrogen on the body temperature of rats, Proc. Soc. Exp. Biol. Med. 131:864.PubMedCrossRefGoogle Scholar
  152. Kampschmidt, R. F., and Upchurch, H. F., 1974, Effect of leukocytic endogenous mediator on plasma fibrinogen and haptoglobin, Proc. Soc. Exp. Biol. Med. 146:904.PubMedCrossRefGoogle Scholar
  153. Kampschmidt, R. F., and Upchurch, H. F., 1980a, Neutrophil release after injections of endotoxin or leukocytic endogenous mediator into rats, J. Reticuloendothelial Soc. 28:191.Google Scholar
  154. Kampschmidt, R. F., and Upchurch, H. F., 1980b, Rate of clearance of circulating leukocytic endogenous mediator in the rat, Proc. Soc. Exp. Biol. Med. 164:537.PubMedCrossRefGoogle Scholar
  155. Kampschmidt, R. F., Pulliam, L. A., and Upchurch, H. F., 1973a, Sources of leukocytic endogenous mediator in the rat, Proc. Soc. Exp. Biol. Med. 144:882.PubMedCrossRefGoogle Scholar
  156. Kampschmidt, R. A., Upchurch, H. F., Eddington, C. L., and Pulliam, L. A., 1973b, Multiple biological activities of a partially purified leukocytic endogenous mediator, Am. J. Physiol. 224:530.PubMedGoogle Scholar
  157. Kampschmidt, R. F., Pulliam, L. A., and Upchurch, H. F., 1980, The activity of partially purified leukocytic endogenous mediator in endotoxin-resistant C3H/HeJ mice, J. Lab. Clin. Med. 95:616.PubMedGoogle Scholar
  158. Katz, S. P., Shimamura, T., Dessaint, J.-P., Braverman, D., and Waksman, B. H., 1980, Mechanisms of action of “lymphocyte activating factor” (LAF). IV. Differential stimulation of T lymphocyte by individual macrophage enzymes (catheptic carboxypeptidase B and serine proteases), Cell. Immunol. 56:68.PubMedCrossRefGoogle Scholar
  159. Kierszenbaum, F., and Waksman, B. H., 1977, Mechanism of action of “lymphocyte activating factor” (LAF). I. Association of lymphocyte activating factor action with early DNA synthesis in PHA-stimulated lymphocytes, Immunology 33:663.Google Scholar
  160. Klempner, M. S., Dinarello, C. A., and Gallin, J. I., 1978, Human leukocytic pyrogen induces release of specific granule contents from human neutrophils, J. Clin. Invest. 61:1330.PubMedCrossRefGoogle Scholar
  161. Klempner, M. S., Dinarello, C. A., Henderson, W. R., and Gallin, J. I., 1979, Stimulation of neutrophil oxygen-dependent metabolism by human leukocytic pyrogen, J. Clin. Invest. 64:996.PubMedCrossRefGoogle Scholar
  162. Klimpel, G. R., 1980, Soluble factor(s) from LPS-activated macrophages induce cytotoxic T cell differentiation from alloantigen-primed spleen cells, J. Immunol. 125:1243.PubMedGoogle Scholar
  163. Kluger, M. J., Ringler, D. H., and Anver, M. R., 1975, Fever and survival, Science 188:166.PubMedCrossRefGoogle Scholar
  164. Koopman, W. J., Farrar, J. J., Oppenheim, J. J., Fuller-Bonar, J., and Dougherty, S., 1977, Association of a low molecular weight helper factor(s) with thymocyte proliferative activity, J. Immunol. 119:55.PubMedGoogle Scholar
  165. Koopman, W. J., Farrar, J. J., and Fuller-Bonar, J., 1978, Evidence for the identification of lymphocyte activating factor as the adherent cell-derived mediator responsible for enhanced antibody synthesis by nude mouse spleen cells, Cell. Immunol. 35:92.PubMedCrossRefGoogle Scholar
  166. Korn, J. H., Halushka, P. V., and LeRoy, E. C., 1980, Mononuclear cell modulation of connective tissue function: Suppression of fibroblast growth by stimulation of endogenous prostaglandin production, J. Clin. Invest. 65:543.PubMedCrossRefGoogle Scholar
  167. Kotani, S., Watanabe, Y., Shimono, T., Narita, T., Kato, K., Stewart-Tull, D. E. S., Kinoshita, F., Yokogawa, K., Kawata, S., Shiba, T., Kusumoto, S., and Tarumi, Y., 1975, Immunoadjuvant activities of cell walls, their water-soluble fractions and peptidoglycan subunits, prepared from various gram-positive bacteria, and of synthetic N-acetylmuramyl peptides, Z. Immunitaetsforsch. Bd. 149:S302.Google Scholar
  168. Kotani, S., Watanabe, Y., Shimono, T., Harada, K., Shiba, T., Kusumoto, S., Yokogawa, K., and Taniguchi, M., 1976, Correlation between the immunoadjuvant activities and pyrogenicities of synthetic N-acetylmuramyl-peptides or amino acids, Biken J. 19:9.PubMedGoogle Scholar
  169. Krakauer, T., Mizel, D., and Oppenheim, J. J., 1982, Independent and synergistic thymocyte proliferative activities of PMA and IL-1, J. Immunol. 129:939.PubMedGoogle Scholar
  170. Kurland, J. I., Kincade, P. W., and Moore, M. A. S., 1977, Regulation of B-lymphocyte clonal proliferation by stimulatory and inhibitory macrophage-derived factors, J. Exp. Med. 146:1420.PubMedCrossRefGoogle Scholar
  171. Lachman, L. B., and Metzgar, R. S., 1980a, Characterization of high and low molecular weight lymphocyte-activating factor (interleukin I) from P388D1 and J774.1 mouse macrophage cell lines, J. Reticuloendothelial Soc. 27:621.Google Scholar
  172. Lachman, L. B., and Metzgar, R. S., 1980b, Purification and characterization of human lymphocyte activating factor, in: Biochemical Characterization of Lymphokines (A. L. DeWeck, F. Kristensen, and M. Landy, eds.), 405–409, Academic Press, New York.Google Scholar
  173. Lachman, L. B., Hacker, M. P., Blyden, G. T., and Handschumacher, R. E., 1977a, Preparation of lymphocyte-activating factor from continuous murine macrophage cell lines, Cell. Immunol. 34:416.PubMedCrossRefGoogle Scholar
  174. Lachman, L. B., Hacker, M. P., and Handschumacher, R. E., 1977b, Partial purification of human lymphocyte-activating factor (LAF) by ultrafiltration and electrophoretic techniques, J. Immunol. 199:2019.Google Scholar
  175. Lachman, L. B., Moore, J. O., and Metzgar, R. S., 1978, Preparation and characterization of lymphocyte-activating factor (LAF) from acute monocytic and myelomonocytic leukemia cells, Cell. Immunol. 41:199.PubMedCrossRefGoogle Scholar
  176. Lachman, L. B., Page, S. O., and Metzgar, R. S., 1980, Purification of human interleukin-1, J. Supramol. Struct. 13:457.PubMedCrossRefGoogle Scholar
  177. Larsson, E. L., Iscove, N. N., and Coutinho, A., 1980, Two distinct factors are required for induction of T-cell growth, Nature (London) 283:664.CrossRefGoogle Scholar
  178. Le, P., Muller, M. T., and Mortensen, R. F., 1982, Acute phase reactants of mice. I. Isolation of serum amyloid P-component (SAP) and its induction by a monokine, J. Immunol. 129:665.PubMedGoogle Scholar
  179. Lee, K., Langman, R. E., Paetku, V. H., and Deiner, E., 1975, The cellular basis of cortisone-induced immunosuppression of the antibody rėsponse studied by its reversal in vitro, Cell. Immunol. 17:405.CrossRefGoogle Scholar
  180. Lee, K. C., Wong, M., and McIntyre, D., 1981, Characterization of macrophage subpopulations responsive to activation by endotoxin and lymphokines, J. Immunol. 126:2474.PubMedGoogle Scholar
  181. Lin, H.-S., Medoff, G., and Kobayashi, G. S., 1977, Effects of amphotericin B on macrophages and their precursor cells, Antimicrob. Agents Chemother. 11:154.PubMedCrossRefGoogle Scholar
  182. Lindsay, H. L., Trown, P. W., Brandt, J., and Forbes, M., 1969, Pyrogenicity of poly I: poly C in rabbits, Nature (London) 223:717.CrossRefGoogle Scholar
  183. Linker-Israeli, M., Bakke, A. C., Kitridou, R. C., Gendler, S., Gillis, S., and Horwitz, D. A., 1983, Defective production of interleukin-1 and interleukin-2 in patients with systemic lupus erythematosis (SLE), J. Immunol. 130:2651.PubMedGoogle Scholar
  184. Lipsky, P. E., Thompson, P. A., Rossenwasser, L. J., and Dinarello, C. A., 1983, The role of interleukin-1 in human B cell activation: Inhibition of B cell proliferation and the generation of immunoglobulin-secreting cells by an antibody against human leukocytic pyrogen, J. Immunol. 130:2708.PubMedGoogle Scholar
  185. Lonai, P., and Steinman, L., 1977, Physiological regulation of antigen binding to T cells: Role of a soluble macrophage factor and of interferon, Proc. Natl. Acad. Sci. USA 74:5662.PubMedCrossRefGoogle Scholar
  186. Lorber, D., Tenenbaum, M., Thurston, S., Gander, G. W., and Goodale, F., 1971, The fate of circulating leukocytic pyrogen in the rabbit, Proc. Soc. Exp. Biol. Med. 137:896.PubMedCrossRefGoogle Scholar
  187. Lovett, D. H., Ryan, J. L., and Sterzel, R. B., 1983, A thymocyte activating factor derived from glomerular mesangial cells, J. Immunol. 130:1796.PubMedGoogle Scholar
  188. Lowy, I., Bona, C., and Chedid, L., 1977, Target cells for the activity of a synthetic adjuvant: Muramyl dipeptide, Cell Immunol. 29:195.PubMedCrossRefGoogle Scholar
  189. Luger, T. A., Stadler, B. M., Katz, S. I., and Oppenheim, J. J., 1981, Epidermal cell (keratinocyte)-derived thymocyte-activating factor (ETAF), J. Immunol. 127:1493.PubMedGoogle Scholar
  190. Luger, T. A., Stadler, B. M., Luger, B. M., Mathieson, B. J., Mage, M., Schmidt, J. A., and Oppenheim, J. J., 1982, Murine epidermal cell derived thymocyte-activating factor resembles murine interleukin-I, J. Immunol. 128:2147.PubMedGoogle Scholar
  191. Lutz, C. T., Glasebrook, A.L., and Fitch, F.W., 1981, Alloreactivecloned T cell lines. III Accessory cell requirement for the growth of cloned cytologic T lymphocytes, J. Immunol. 126:1404.PubMedGoogle Scholar
  192. McAdam, K. P. W. J., and Dinarello, C. A., 1981, Induction of serum amyloid A synthesis by human leukocytic pyrogen, in: Bacterial Endotoxins and Host Response (M. K. Agarwal, ed.), pp. 167–178, Elsevier/North-Holland, Amsterdam.Google Scholar
  193. McAdam, K. P. W. J., and Ryan, J. L., 1978, C57BL/10/CR mice: Nonresponders to activation by the lipid A moiety of bacterial lipopolysaccharide, J. Immunol. 120:249.PubMedGoogle Scholar
  194. McAdam, K. P. W. J., Westermark, P., Anders, R. F., and Voller, A., 1979, Juvenile amyloidosis in the Anga peoples of Papua New Guinea, in: Proceedings, 3rd International Symposium on Amyloidosis (C. G. Glenner, P. Pinho e Costa, and A. Falcao de Freitas, eds.), pp. 207–210, Excerpta Medica, Amsterdam.Google Scholar
  195. McGuire, M. K. B., Meats, J. E., and Russell, R. G. G., 1980, Cell-cell interactions in the rheumatoid joint, Agents Actions 10:486.PubMedCrossRefGoogle Scholar
  196. McGuire-Goldring, M. K. B., Meats, J. E., Wood, D. D., Ihrie, E. J., Ebsworth, N. M., and Russell, R. G. G., 1984, Activation of human chondrocytes and synoviocytes in vitro by human interleukin-1, submitted to Arth. Rheum.Google Scholar
  197. MacPherson, R. K., 1959, The effect of fever on temperature regulation in man, Clin. Sci. 18:281.PubMedGoogle Scholar
  198. Maizel, A. L., Mehta, S. R., Ford, R. J., and Lachman, L. B., 1981a, Effect of interleukin-1 on human thymocytes and purified human T cells, J. Exp. Med. 153:470.PubMedCrossRefGoogle Scholar
  199. Maizel, A. L., Mehta, S. R., Hauft, S., Franzini, D., Lachman, L. B., and Ford, R. J., 1981b, Human T lymphocyte/monocyte interaction in response to lectin: Kinetics of entry into the S phase, J. Immunol. 127:1058.PubMedGoogle Scholar
  200. Mannel, D. N., Farrar, J. J., and Mergenhagen, S. E., 1980, Separation of a serum-derived tumoricidal factor from a helper factor for plaque-forming cells, J. Immunol. 124:1106.PubMedGoogle Scholar
  201. Martin, B. M., Gimbrone, M. A., Jr., Unanue, E. R., and Cotran, R. S., 1981, Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor, J. Immunol. 126:1510.PubMedGoogle Scholar
  202. Meats, J. E., McGuire, M. B., and Russell, R. G. G., 1980, Human synovium releases a factor which stimulates chondrocyte production of PGE and plasminogen activator, Nature (London) 286:891.CrossRefGoogle Scholar
  203. Melcion, C., Lachman, L., Killen, P. D., Morel-Maroger, L., and Striker, G. E., 1982, Mesangial cells, effects of monocyte products on proliferation and matrix synthesis, Transplant. Proc. 14:559.PubMedGoogle Scholar
  204. Meltzer, M. S., and Oppenheim, J. J., 1977, Bidirectional amplification of macrophage-lymphocyte interactions: Enhanced lymphocyte activation factor production by activated adherent mouse peritoneal cells, J. Immunol. 118:77.PubMedGoogle Scholar
  205. Merrill, W. W., Naegel, G. P., Matthay, R. A., and Reynolds, H. Y., 1980, Alveolar macrophage-derived chemotactic factor, J. Clin. Invest. 65:268.PubMedCrossRefGoogle Scholar
  206. Merriman, C. R., Pulliam, L. A., and Kampschmidt, R. F., 1975, Effect of leukocytic endogenous mediator on C-reactive protein in rabbits, Proc. Soc. Exp. Biol. Med. 149:782.PubMedCrossRefGoogle Scholar
  207. Merriman, C. R., Pulliam, L. A., and Kampschmidt, R. F., 1977, Comparison of leukocytic pyrogen and leukocytic endogenous mediator, Proc. Soc. Exp. Biol. Med. 154:224.PubMedCrossRefGoogle Scholar
  208. Mickenberg, I. D., Root, R. K., and Wolff, S. M., 1972, Bactericidal and metabolic properties of human eosinophils, Blood 39:67.PubMedGoogle Scholar
  209. Mishell, R. I., Bradley, L. M., Chen, Y.-H. U., Grabstein, K. H., and Shiigi, S. M., 1979, Glucocorticosteroid response-modifying factors derived from accessory cells, Ann. N.Y. Acad. Sci. 332:433.PubMedCrossRefGoogle Scholar
  210. Mishell, R. I., Bradley, L. M., Chen, Y.-H. U., Grabstein, K. H., and Shiigi, S. M., 1980a, Protection of helper thymus derived cells from glucocorticosteroids by mediators from adjuvant activated monocytes, in: Microbiology1980 (D. Schlessinger, ed.), pp. 82–86, American Society of Microbiology, Washington, D.C.Google Scholar
  211. Mishell, R. I., Shiigi, J. M., Mishell, B. B., Grabstein, K. H., and Shiigi, S. M., 1980b, Prevention of the immunosuppressive effects of glucocorticosteroids by cell-free factors from adjuvant-activated accessory cells, Immunopharmacology 2:233.PubMedCrossRefGoogle Scholar
  212. Mishell, R. I., Chen, Y. U., Clark, G. C., Gold, M. R., Hill, J. L., Kwan, E., and Lee, D. A., 1981, Induction of murine lymphocytes and macrophages by components of bacterial cell walls and membranes, in: Chemistry and Biological Activities of Bacterial Surface Amphiphiles (G. D. Shockman and A. J. Wickin, eds.), p. 376–388, Academic Press, New York.Google Scholar
  213. Mishell, R. I., Lee, D. A., Grabstein, K. H., and Lachman, L. B., 1982, Prevention of the in vitro myelosuppressive effects of glucocorticosteroids by interleukin-1 (IL-1), J. Immunol. 128:1614.PubMedGoogle Scholar
  214. Mizel, S. B., 1979a, Biochemical and biological characterization of lymphocyte-activating factor (LAF) produced by the murine macrophage cell line, P388D1 Ann. N.Y. Acad. Sci. 332:539.PubMedCrossRefGoogle Scholar
  215. Mizel, S. B., 1979b, Biochemical characteristics of macrophage-derived immunostimulatory factors, in: Molecular Mediators of Cellular Immunity: Characterizations and Actions (J. W. Hadden and W. E. Stewart, eds.), p. 365–382, Humana Press, Clifton, N.J.Google Scholar
  216. Mizel, S. B., 1979c, Physicochėmical characterization of lymphocyte-activating factor (LAF), J. Immunol. 122:2167.PubMedGoogle Scholar
  217. Mizel, S. B., 1980, Studies on the purification and structure function relationships of lymphocyte activating factor (interleukin-1), Mol. Immunol. 17:571.PubMedCrossRefGoogle Scholar
  218. Mizel, S. B., and Ben-Zvi, A., 1980, Studies on the role of lymphocyte-activating factor (interleukin-1) in antigen-induced lymph node lymphocyte proliferation, Cell. Immunol. 54:382.PubMedCrossRefGoogle Scholar
  219. Mizel, S. B., and Mizel, D., 1981, Purification to apparent homogeneity of murine interleukin-1, J. Immunol. 126:834.PubMedGoogle Scholar
  220. Mizel, S. B., and Rosenstreich, D. L., 1979, Regulation of lymphocyte activating factor (LAF) production and secretion in P388D1 cells: Identification of high molecular weight precursors of LAF, J. Immunol. 122:2173.PubMedGoogle Scholar
  221. Mizel, S. B., Oppenheim, J. J., and Rosenstreich, D. L., 1978a, Characterization of lymphocyte-activating factor (LAF) produced by the macrophage line P388D1. I. Enhancement of LAF production by activated T lymphocytes, J. Immunol. 120:1497.PubMedGoogle Scholar
  222. Mizel, S. B., Oppenheim, J. J., and Rosenstreich, D. L., 1978b, Characterization of lymphocyte-activating factor (LAF) produced a macrophage cell line, P388D1. II. Biochemical characterization of LAF induced by activated T cells and LPS, J. Immunol. 120:1504.PubMedGoogle Scholar
  223. Mizel, S. B., Rosenstreich, D. L., and Oppenheim, J. J., 1978c, Phorbol myristic acetate stimulates LAF production by the macrophage cell lines, P388D1 Cell Immunol. 40:230.PubMedCrossRefGoogle Scholar
  224. Mizel, S. B., Dayer, J. M., Krane, S. M., and Mergenhagen, S. E., 1981, Stimulation of rheumatoid synovial cell collagenase and prostaglandin production by partially purified lymphocyte activating factor (interleukin-1), Proc. Natl. Acad. Sci. USA 78:2474.PubMedCrossRefGoogle Scholar
  225. Moore, D. M., Murphy, P. A., Chesney, P. W., and Wood, W. B., Jr., 1973, Synthesis of endogenous pyrogen by rabbit leukocytes, J. Exp. Med. 137:1263.PubMedCrossRefGoogle Scholar
  226. Moore, R. N., Goodrum, K. J., Couch, R. E., Jr., and Berry, L. J., 1978, Elicitation of endotoxemic effects in C3H/HeJ mice with glucocorticoid antagonizing factor and partial characterization of the factor, Infect. Immun. 19:79.PubMedGoogle Scholar
  227. Moore, R. N., Oppenheim, J. J., Farrar, J. J., Carter, C. S., Jr., Waheed, A., and Shadduck, R. K., 1980, Production of lymphocyte-activating factor (interleukin-I) by macrophages activated with colony-stimulating factors, J. Immunol. 125:1302.PubMedGoogle Scholar
  228. Morgan, E. L., and Weigle, W. O., 1980, Polyclonal activation of murine B lymphocytes by Fc fragments. I. The requirement for two signals in the generation of polyclonal antibody response induced by Fc fragments, J. Immunol. 124:1330.PubMedGoogle Scholar
  229. Morgan, E. L., Hugli, T. E., and Weigle, W. O., 1982, Isolation and identification of a biologically active peptide derived from the CH3 domain of human IgGi, Proc. Natl. Acad. Sci., USA, 79:5388.PubMedCrossRefGoogle Scholar
  230. Mosier, D. E., 1967, A requirement for two cell types for antibody formation in vitro, Science, 158:1573.CrossRefGoogle Scholar
  231. Murphy, P. A., Simon, P. L., and Willoughby, W. F., 1980, Endogenous pyrogens made by rabbit peritoneal exudate cells are identical with lymphocyte-activating factors made by rabbit alveolar macrophages, J. Immunol. 124:2498.PubMedGoogle Scholar
  232. Murphy, P. A., Cebula, T. A., Levin, J., and Windle, B. E., 1981a, Rabbit macrophages secrete two biochemically and immunologically distinct endogenous pyrogens, Infect. Immun. 34:177.PubMedGoogle Scholar
  233. Murphy, P. A., Cebula, T. A., and Windle, B. E., 1981b, Heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylated variants of a single polypeptide chain, Infect. Immun. 34:184.PubMedGoogle Scholar
  234. Nakayama, T., and Hori, T., 1973, Effect of anaesthetic and pyrogen on thermally sensitive neurons in the brain stem, J. Appl. Physiol. 34:351.PubMedGoogle Scholar
  235. Nakayama, T., Hammel, H. T., Hardy, J. D., and Eisenman, J. S., 1963, Thermal stimulation of electrical activity of single units of the preoptic region, Am. J. Physiol. 204:1122.Google Scholar
  236. Newsome, D. A., and Gross, J., 1979, Regulation of corneal collagenase production: Stimulation of serially passaged stromal cells by blood mononuclear cells, Cell 16:895.PubMedCrossRefGoogle Scholar
  237. Nordlund, J. J., Root, R. K., and Wolff, S. M., 1970, Studies on the origin of human leukocytic pyrogen, J. Exp. Med. 131:727.PubMedCrossRefGoogle Scholar
  238. Okada, M., Kishimoto, T., Igarashi, T., Teranishi, T., and Yamamura, Y., 1978, LPS- or 8 Br-cyclic AMP-induced production of T cell-activating factor(s) in macrophage tumor cell line J774.1, J. Immunol. 120:1097.PubMedGoogle Scholar
  239. Ooi, Y. M., Weiss, M. A., Hsu, A., and Ooi, B. S., 1983, Mechanisms of suppression of mouse mesangial cell proliferation by macrophage supernatants, / Immunol. 130:1790.Google Scholar
  240. Opitz, H. G., Opitz, U., Lenke, H., Flad, H. D., Hewlett, G., and Schlumberger, H. D., 1977, Humoral primary immune response in vitro in a homologous mouse system: Replacement of fetal calf serum by a 2-mercaptoethanol or macrophage-activated fraction of mouse serum, J. Immunol. 119:1089.Google Scholar
  241. Oppenheim, J. J., and Gery, I., 1982, Interleukin-1 is more than an interleukin, Immunol. Today. 3:113.CrossRefGoogle Scholar
  242. Oppenheim, J. J., Leventhal, B. G., and Hersh, E. M., 1968, The transformation of column-purified lymphocytes with nonspecific and specific antigenic stimuli, J. Immunol. 101:262.PubMedGoogle Scholar
  243. Oppenheim, J. J., Shneyour, A., and Kook, A. I., 1976, Enhancement of DNA synthesis and cAMP content of mouse thymocytes by mediator(s) derived from adherent cells, J. Immunol. 116:1466.PubMedGoogle Scholar
  244. Oppenheim, J. J., Mizel, S. B., and Meltzer, M. S., 1979a, Biological effects of lymphocyte and macrophage-derived mitogenic “amplification” factors, in: Biology of Lymphokines (S. Cohen, E. Pick, and J. J. Oppenheim, eds.), pp. 291–323, Academic Press, New York.Google Scholar
  245. Oppenheim, J. J., Moore, R., Gmelig-Meyling, F., Togawa, A., Wahl, S., Mathieson, B. J., Dougherty, S., and Carter, C., 1980a, Role of cytokine- and endotoxin-induced monokines in lymphocyte proliferation, differentiation, and immunoglobulin production, in: Macrophage Regulation of Immunity (E. R. Unanue and A. S. Rosenthal, eds.), pp. 379–398, Academic Press, New York.Google Scholar
  246. Oppenheim, J. J., Northoff, H., Greenhill, A., Mathieson, B. J., Smith, K., and Gillis, S., 1980b, Properties of human monocyte derived lymphocyte activating factor (LAF) and lymphocyte derived mitogenic factor (LMF), in: Biochemical Characterization of Lymphokines (A. L. DeWeck, F. Kristensen, and M. Landy, eds.), pp. 399–404, Academic Press, New York.Google Scholar
  247. Oppenheim, J. J., Togawa, A., Chedid, L., and Mizel, S., 1980c, Components of mycobacteria and muramyl dipeptide with adjuvant activity induce lymphocyte activity factor, Cell. Immunol. 50:71.PubMedCrossRefGoogle Scholar
  248. Otterness, I. G., Lachman, L. B., and Bliven, M. L., 1980, Effects of levamisole on the proliferation of thymic lymphocyte subpopulations, Immunopharmacology 3:61.CrossRefGoogle Scholar
  249. Palacios, R., amd Moller, G., 1981, HLA-DR antigens render resting T cells sensitive to interleukin-2 and induce production of the growth factor in the autologous mixed lymphocyte reaction, Cell. Immunol. 63:143.PubMedCrossRefGoogle Scholar
  250. Palacios, R., Ivhed, I., Sideras, P., Nilsson, K., Sugawara, I., and Fernandez, C., 1982, Accessory function of human tumor cell lines. I. Production of interleukin-1 by the human histiocytic lymphoma cell line U-937, Eur. J. Immunol. 12:895.PubMedCrossRefGoogle Scholar
  251. Pekarek, R. S., Powanda, M. C., and Wannemacher, R. W., Jr., 1972a, The effect of leukocyte endogenous mediator (LEM) on serum copper and ceruloplasmin concentrations in the rat, Proc. Soc. Exp. Biol. Med. 141:1029.PubMedCrossRefGoogle Scholar
  252. Pekarek, R. S., Wannemacher, R. W., Jr., and Beisel, W. R., 1972b, The effect of leukocytic endogenous mediator (LEM) on the tissue distribution of zinc and iron, Proc. Soc. Exp. Biol. Med. 140:685.PubMedCrossRefGoogle Scholar
  253. Phadke, K., Nanda, S., Marder, P., and Carlson, D. G., 1981, Release of chondrocyte-stimulating factor by rabbit peritoneal macrophages, Clin. Exp. Immunol. 43:408.PubMedGoogle Scholar
  254. Piantelli, M., Lauriola, L., Maggiano, N., Ranelletti, F. O., and Musiani, P., 1981, Role of interleukin-1 and 2 on human thymocyte mitogen activation, Cell. Immunol. 64:337.PubMedCrossRefGoogle Scholar
  255. Postlethwaite, A. E., Lachman, L. B., Mainardi, C. L., and Kang, A. H., 1983, Interleukin-1 stimulation of collagenase production by cultured fibroblasts, J. Exp. Med. 157:801.PubMedCrossRefGoogle Scholar
  256. Price, G. B., and Gorczynski, R. M., 1979, The role of macrophages in stimulation of immune induction and myelopoiesis. I. Comparison of activity of macrophage-derived factors in granulopoiesis and immunostimulation, Immunopharmacology 1:175.PubMedCrossRefGoogle Scholar
  257. Pryor, D. S., 1967, Tropical splenomegaly in New Guinea, Q. J. Med. 36:321.PubMedGoogle Scholar
  258. Puri, J., and Lonai, P., 1980, Mechanism of antigen binding by T cells: H-2 (I-A)-restricted binding of antigen plus Ia by helper cells, Eur. J. Immunol. 10:273.PubMedCrossRefGoogle Scholar
  259. Puri, J., Shinitzky, M., and Lonai, P., 1980, Concomitant increase in antigen binding and in T cell membrane lipid viscosity induced by the lymphocyte-activating factor, LAF, J. Immunol. 124:1937.PubMedGoogle Scholar
  260. Ramic, Z., Lukic, M. L., and Simic, M. M., 1979a, Macrophage production of lymphoregulatory factors in BCG infected guinea pigs, Yugoslav. Physiol. Pharmacol. Acta 15:444.Google Scholar
  261. Ramic, Z., Stosic-Grujicic, S., Pavlovic, Z., Ejdus, L., and Simic, M. M., 1979b, Carrageenan potentiates the helper activity of macrophages in the response of T lymphocytes to mitogens, Period. Biol. 81:167.Google Scholar
  262. Rao, A., Mizel, S. B., and Cantor, H., 1983, Disparate functional properties of two interleukin-1 responsive Ly-1+ 2- T cell clones: Distinction of T cell growth factor and T cell-replacing factor activities, J. Immunol. 130:1743.PubMedGoogle Scholar
  263. Raviola, E., 1975, Thymus, in: A Textbook of Histology (W. Bloom and D. Fawcett, eds.), p. 457, Saunders, Philadelphia.Google Scholar
  264. Ridge, S. C., Oronsky, A. L., and Kerwar, S. S., 1980, Induction of the synthesis of latent collagenase and latent neutral protease in chondrocytes by a factor synthesized by activated macrophages, Arthritis Rheum. 23:448.PubMedCrossRefGoogle Scholar
  265. Roberts, D. W., and Weidanz, W. P., 1978, Splenomegaly, enhanced phagocytosis, and anemia are thymus dependent responses to malaria, Infect. Immun. 20:728.PubMedGoogle Scholar
  266. Rollinghoff, M., Pfizenmaier, K., and Wagner, H., 1982, T-T cell interactions during cytotoxic T-cell responses. IV. Murine lymphoid dendritic cells are powerful stimulators for helper T lymphocytes, Eur. J. Immunol 12:337.PubMedCrossRefGoogle Scholar
  267. Root, R. K., Nordlund, J. J., and Wolff, S. M., 1970, Factors affecting the quantitative production and assay of human leukocytic pyrogen, J. Lab. Clin. Med. 75:679.PubMedGoogle Scholar
  268. Rosenberg, S. A., and Lipsky, P. E., 1980, The role of monocyte factors in the differentiation of immunoglobulin secreting cells from human peripheral blood B cells, J. Immunol. 125:232.PubMedGoogle Scholar
  269. Rosenberg, S. A., and Lipsky, P. E., 1981, The role of monocytes in pokeweed mitogen-stimulated human B cell activation: Separate requirements for intact monocytes and a soluble monocyte factor, J. Immunol. 126:1341.PubMedGoogle Scholar
  270. Rosenstreich, D. L., and Mizel, S. B., 1978, The participation of macrophages and macrophage cell lines in the activation of T lymphocytes by mitogens, Immunol. Rev. 40:102.PubMedCrossRefGoogle Scholar
  271. Rosenstreich, D. L., and Wilton, J. M., 1975, The mechanism of action of macrophages in the activation of T lymphocytes in vitro by antigens and mitogens, in: Immune Recognition (A. S. Rosenthal, ed.), pp. 113–132, Academic Press, New York.Google Scholar
  272. Rosenstreich, D. L., Farrar, J. J., and Dougherty, S., 1976, Absolute macrophage dependency of T lymphocyte activation by mitogens, J. Immunol. 116:131.PubMedGoogle Scholar
  273. Rosenthal, C. J., and Sullivan, L., 1978, Serum amyloid A: Evidence for its origin in polymorphonuclear leukocytes, J. Clin. Invest. 62:1181.PubMedCrossRefGoogle Scholar
  274. Rosenwasser, L. J., and Dinarello, C. A., 1981, Ability of human leukocytic pyrogen to enhance phytohemagglutinin induced murine thymocyte proliferation, Cell. Immunol. 63:134.PubMedCrossRefGoogle Scholar
  275. Rosenwasser, J., and Rosenthal, A. S., 1978a, Adherent cell function in murine T lymphocyte antigen recognition. I. A macrophage-dependent T cell proliferation assay in the mouse, J. Immunol. 120:1991.PubMedGoogle Scholar
  276. Rosenwasser, L. J., and Rosenthal, A. S., 1978b, Adherent cell function in murine T lymphocyte antigen recognition. II. Definition of genetically restricted and nonrestricted macrophage functions in T cell proliferation, J. Immunol. 121:2497.PubMedGoogle Scholar
  277. Rosenwasser, L. J., Dinarello, C. A., and Rosenthal, A. S., 1979, Adherent cell function in murine thymus derived lymphocyte antigen recognition. IV. Enhancement of murine thymus derived cell antigen recognition by human leukocytic pyrogen, J. Exp. Med. 150:709.PubMedCrossRefGoogle Scholar
  278. Roth, J., Le Roith, D., Shiloach, J., Rosenzweig, J. L., Lesniak, M. A., and Havrankova, J., 1982, The evolutionary origin of hormones, neurotransmitters, and other extracellular chemical messengers: Implications for mammalian biology, N. Engl. J. Med. 306:523.PubMedCrossRefGoogle Scholar
  279. Rupp, R. G., and Fuller, G. M., 1979, Comparison of albumin and fibrinogen biosynthesis in stimulated rats and cultured fetal rat hepatocytes, Biochem. Biophys. Res. Commun. 88:327.PubMedCrossRefGoogle Scholar
  280. Sakata, Y., Morimoto, A., Takase, Y., and Murakami, N., 1981, Direct effect of endogenous pyrogen on medullary temperature-responsive neurons in rabbits, Jpn. J. Physiol. 31:247.PubMedCrossRefGoogle Scholar
  281. Saklatvala, J., and Dingle, J. T., 1980, Identification of catabolin, a protein from synovium which induces degradation of cartilage in organ culture, Biochem. Biophys. Res. Commun. 96:1225.PubMedCrossRefGoogle Scholar
  282. Saunder, D. N., Carter, C. S., Katz, S. I., and Oppenheim, J. J., 1982, Epidermal cell production of thymocyte activating factor (ETAF), J. Invest. Dermatol. 79:34.CrossRefGoogle Scholar
  283. Saunder, D. N., Mounessa, N. L., Katz, S. I., Dinarello, C. A., and Gallin, J. I., 1983, Chemotactic properties of human ETAF/LP/IL-1, Fed. Proc. 42:449.Google Scholar
  284. Schenck, J. R., Hargie, M. P., Brown, M. S., Ebert, D. S., Yoo, A. L., and McIntire, F. C., 1969, The enhancement of antibody formation by Escherichia coli lipopolysaccharide and detoxified derivative, J. Immunol. 102:1411.PubMedGoogle Scholar
  285. Schmidt, J. A., Mizel, S. B., Cohen, D., and Green, I., 1982, Interleukin-1, a potential regulator of fibroblast proliferation, J. Immunol 128:2177.PubMedGoogle Scholar
  286. Schrader, J. W., 1973, Mechanism of activation of the bone marrow-derived lymphocyte. III. A distinction between a macrophage-produced triggering signal and the amplifying effect on triggered B lymphocytes of allogeneic interactions, J. Exp. Med. 138:1466.PubMedCrossRefGoogle Scholar
  287. Selinger, M. J., McAdam, K. P. W. J., Kaplan, M. M., Sipe, J. D., Vogel, S. N., and Rosenstreich, D. L., 1980, Monokine-induced synthesis of serum amyloid A protein by hepatocytes, Nature (London) 285:498.CrossRefGoogle Scholar
  288. Shaw, J., Caplan, B., Paetkau, V., Pilarsky, L. M., Delovitch, T. L., and McKenzie, I. F. C., 1980, Cellular origin of co-stimulator (1L-2) and its activity in cytotoxic T lymphocyte responses, J. Immunol 124:2231.PubMedGoogle Scholar
  289. Shiozawa, C., Longenecker, M. B., and Diener, E., 1980, In vitro cooperation of antigen-specific T cell-derived helper factor, B cells, and adherent cells or their secretory product in a primary IgM response to chicken MHC antigens, J. Immunol. 125:68.PubMedGoogle Scholar
  290. Shirley, S. F., and Little, J. R., 1979, Immunopotentiating effects of amphotericin B. I. Enhanced contact sensitivity in mice, J. Immunol. 123:2878.PubMedGoogle Scholar
  291. Simon, P. L., and Willoughby, W. F., 1981, The role of subcellular fractions in pulmonary immune function: Physiochemical characterization of two distinct species of lymphocyte activating factor produced by rabbit alveolar macrophages, J. Immunol. 126:1534.PubMedGoogle Scholar
  292. Sipe, J. D., McAdam, K. P. W. J., and Uchino, F., 1978, Biochemical evidence for the biphasic development of experimental amyloidosis, Lab. Invest. 38:110.PubMedGoogle Scholar
  293. Sipe, J. D., Vogel, S. N., Ryan, J. L., McAdam, K. P. W. J., and Rosenstreich, D. L., 1979, Detection of a mediator derived from endotoxin-stimulated macrophages that induces the acute phase serum amyloid A response in mice, J. Exp. Med. 150:597.PubMedCrossRefGoogle Scholar
  294. Skopinska, E., 1972, Some effects of Escherichia coli endotoxin on the graft-versus-host reaction in mice, Transplantation 14:432.PubMedCrossRefGoogle Scholar
  295. Smith, K. A., Gillis, S., Baker, P. E., and McKenzie, D., 1979, T cell growth factor-mediated T cell proliferation, Ann. N.Y. Acad. Sci. 332:423.PubMedCrossRefGoogle Scholar
  296. Smith, K. A., Gilbride, K. J., and Favata, M. F., 1980a, Lymphocyte activating factor promotes T cell growth factor production by cloned murine lymphoma cells, Nature (London) 287:853.CrossRefGoogle Scholar
  297. Smith, K. A., Lachman, L. B., Oppenheim, J. J., and Favata, M. F., 1980b, The functional relationship of the interleukins, J. Exp. Med. 151:1551.PubMedCrossRefGoogle Scholar
  298. Snyder, D. S., and Unanue, E. R., 1982, Corticosteroids inhibit murine macrophage Ia expression and interleukin-1 production, J. Immunol. 129:1803.PubMedGoogle Scholar
  299. Solomons, N. W., Elson, C. O., Pekarek, R. S., Jacob, R. A., Sandstead, H. H., and Rosenberg, I. H., 1978, Leukocytic endogenous mediator in Crohn’s disease, Infect. Immun. 22:637.PubMedGoogle Scholar
  300. Sporn, M. B., and Todaro, G. J., 1980, Autocrine secretion and malignant transformation of cells, N. Engl. J. Med. 303:878.PubMedCrossRefGoogle Scholar
  301. Sredni, B., Michlin, H., Kalechman, Y., and Rozenszajn, L. A., 1978, Regulatory effects of macrophage-secreted factors on T lymphocyte colony growth, Cell. Immunol. 36:15.PubMedCrossRefGoogle Scholar
  302. Stamenkovic, M., and Simic, M. M., 1979, Partial biochemical characterization of carrageenan-induced T cell activating factor (TAF), Yugoslav. Physiol. Pharmacol. Acta 15:469.Google Scholar
  303. Staruch, M.-J., and Wood, D. D., 1983, The adjuvanticity of interleukin-1 in vivo, J. Immunol. 130:2191.Google Scholar
  304. Stevenson, R. D., 1976, Studies on the production and action of polymorph migration stimulator, Clin. Exp. Immunol. 24:527.PubMedGoogle Scholar
  305. Stevenson, R. D., and Gray, A. C., 1976, Studies on the physiochemical characteristics of polymorph migration stimulator, Clin. Exp. Immunol. 26:457.PubMedGoogle Scholar
  306. Stosic-Grujicic, S., and Simic, M. M., 1979, Factors affecting the secretion of TAF by carrageenan-pretreated macrophages: The effects of mitogen-activated T cells and of hydrocortisone, Yugoslav. Physiol. Pharmacol. Acta 15:488.Google Scholar
  307. Stosic-Grujicic, S., and Simic, M. M., 1982, Modulation of interleukin-1 production by activated macrophages: In vitro action of hydrocortisone, colchicine, and cytochalasin B, Cell. Immunol. 69:235.PubMedCrossRefGoogle Scholar
  308. Sugimoto, M., Germain, R. N., Chedid, L., and Benacerraf, B., 1978, Enhancement of carrier-specific helper T cell function by the synthetic adjuvant, N-acetyl muramyl-L-alanyl-D-isoglutamine (MDP), J. Immunol. 120:980.PubMedGoogle Scholar
  309. Sztein, M. B., Vogel, S. N., Sipe, J. D., Murphy, P. A., Mizel, S. B., Oppenheim, J. J., and Rosenstreich, D. L., 1981, The role of macrophages in the acute-phase response: SAA inducer is closely related to lymphocyte activating factor and endogenous pyrogen, Cell. Immunol. 63:164.PubMedCrossRefGoogle Scholar
  310. Sztein, M. B., Luger, T. A., and Oppenheim, J. J., 1982, An epidermal cell-derived cytokine triggers the in vivo synthesis of serum amyloid A by hepatocytes, J. Immunol. 129:87.PubMedGoogle Scholar
  311. Tanabe, M. J., Tsurumi, Y., and Nakano, M., 1977, An endotoxin induced serum factor that causes enhancement of antibody response to heterologous erythrocytes, Microbiol. Immunol. 21:653.PubMedGoogle Scholar
  312. Tanaka, A., Nagao, S., Nagao, R., Kotani, S., Shiba, T., and Kusumoto, S., 1979, Stimulation of the reticuloendothelial system of mice by muramyl dipeptide, Infect. Immun. 24:302.PubMedGoogle Scholar
  313. Taniyama, T., and Holden, H. T., 1979, Requirement of histocompatible macrophages for the induction of a secondary cytotoxic response to syngeneic tumor cells in vitro, J. Immunol. 123:43.Google Scholar
  314. Taub, R. N., Krantz, A. R., and Dresser, D. W., 1970, The effect of localized injection of adjuvant material on the draining lymph node, Immunology 18:171.PubMedGoogle Scholar
  315. Tenu, J.-P., Lederer, E., and Petit, J.-F., 1980, Stimulation of thymocyte mitogenic protein secretion and of cytostatic activity of mouse peritoneal macrophages by trehalose dimycolate and muramyl-dipeptide, Eur. J. Immunol. 10:647.PubMedCrossRefGoogle Scholar
  316. Thoman, M. L., Morgan, E. L., and Weigle, W. O., 1980, Polyclonal activation of murine B lymphocytes by Fc fragments. II. Replacement of T cells by a soluble helper T cell-replacing factor (TRF), J. Immunol 125:1630.PubMedGoogle Scholar
  317. Thompson, W. L., Abeles, F. B., Beall, F. A., Dinterman, R. E., and Wannemacher, R. W., Jr., 1975, LEM-induced synthesis of hepatic RNA and acute phase serum globulins, Fed. Proc. 34:620.Google Scholar
  318. Thompson, W. L., Abeles, F. B., Beall, F. A., Dinterman, R. E., and Wannemacher, R. W., Jr., 1976, Influence of the adrenal glucocorticoids on the stimulation of synthesis of hepatic ribonucleic acid and plasma acute-phase globulins by leukocytic endogenous mediator, Biochem. J. 156:23.Google Scholar
  319. Tocco, R. J., Kahn, L. L., Kluger, M. J., and Vander, A. J., 1983, Relationship of trace metals to fever during infection: Are prostaglandins involved?, Am. J. Physiol. 244:R368.Google Scholar
  320. Togawa, A., Oppenheim, J. J., and Mizel, S. B., 1979, Characterization of lymphocyte activating factor (LAF) produced by human mononuclear cells: Biochemical relationship of high and low molecular weight forms of LAF, J. Immunol. 122:2112.PubMedGoogle Scholar
  321. Triglia, D., and Rothenberg, E., 1981, “Mature” thymocytes are not glucocorticoid-resistant in vitro, J. Immunol. 127:64.PubMedGoogle Scholar
  322. Tubbs, H., 1980, Endotoxin in human and murine malaria, Trans. R. Soc. Trop. Med. Hyg. 74:121.PubMedCrossRefGoogle Scholar
  323. Turchik, J. B., and Bornstein, D. L., 1980, Role of the central nervous system in acute-phase responses to leukocytic pyrogen, Infect. Immun. 30:439.PubMedGoogle Scholar
  324. Ulrich, F., 1977, Studies of lymphocyte activating factor from alveolar macrophages, J. Reticuloendothelial Soc. 21:33.Google Scholar
  325. Unanue, E. R., and Kiely, J.-M., 1977, Synthesis and secretion of a mitogenic protein by macrophages: Description of a superinduction phenomenon, J. Immunol. 119:925.PubMedGoogle Scholar
  326. Unanue, E. R., Kiely, J.-M., and Calderon, J., 1976, The modulation of lymphocyte function by molecules secreted by macrophages. II. Conditions leading to increased secretion, J. Exp. Med. 144:155.PubMedCrossRefGoogle Scholar
  327. Vaes, G., 1980, Cellular secretions and tissue breakdown: Cell-to-cell interactions in the secretion of enzymes of connective tissue breakdown, collagenase and proteoglycan-degrading neutral proteases, Agents Actions 10:474.PubMedCrossRefGoogle Scholar
  328. Wagner, H., Feldmann, M., Boyle, W., and Schrader, J. W., 1972, Cell-mediated immune response in vitro. III. The requirement for macrophages in cytotoxic reactions against cell-bound and subcellular alloantigens, J. Exp. Med. 136:331.PubMedCrossRefGoogle Scholar
  329. Wahl, S. M., Wahl, L. M., McCarthy, J. B., Chedid, L., and Mergenhagen, S. E., 1979, Macrophage activation by mycobacterial water soluble compounds and synthetic muramyl dipeptide, J. Immunol. 122:2226.PubMedGoogle Scholar
  330. Wannemacher, R. W., Jr., DuPont, H. L., Pekarek, R. S., Powanda, M. C., Schwartz, A., Hornic, R. B., and Beisel, W. R., 1972, An endogenous mediator of depression of amino acids and trace metals in serum during typhoid fever, J. Infect. Dis. 126:77.PubMedCrossRefGoogle Scholar
  331. Wannemacher, R. W., Jr., Pekarek, R. S., Thompson, W. L., Curnow, R. T., Beall, F. A., Zenser, T. V., DeRubertis, F. R., and Beisel, W. R., 1975, Protein from polymorphonuclear leukocytes (LEM) which affects rate of hepatic amino-acid transport and synthesis of acute-phase globulins, Endocrinology 96:651.PubMedCrossRefGoogle Scholar
  332. Watson, J., Gillis, S., and Smith, K., 1980, Molecular characterization of lymphokines that enhance immune responses, in: Biochemical Characterization of Lymphokines (A. L. DeWeck, F. Kristensen, and M. Landy, eds.), pp. 463–470, Academic Press, New York.Google Scholar
  333. Weinberg, E. D., 1978, Iron and infection, Microbiol. Rev. 42:45.PubMedGoogle Scholar
  334. Weinberg, J. B., Chapman, H. A., and Hibbs, J. B., Jr., 1978, Characterization of the effects of endotoxin on macrophage tumor cell killing, J. Immunol. 121:72.PubMedGoogle Scholar
  335. Wharton, W., Gillespie, G. Y., Russell, S. W., and Pledger, W. J., 1982, Mitogenic activity elaborated by macrophage-like cell lines acts as competence factor(s) for Balb/c 3T3 cells, J. Cell Physiol. 110:93.PubMedCrossRefGoogle Scholar
  336. Wood, D. D., 1977, Role of adherent cell products in the immune response, in: Regulatory Mechanisms in Lymphocyte Activation (D. Lucas, ed.), pp. 117–134, Academic Press, New York.CrossRefGoogle Scholar
  337. Wood, D. D., 1979a, Purification and properties of human B cell activating factor, J. Immunol. 123:2395.PubMedGoogle Scholar
  338. Wood, D. D., 1979b, Mechanism of action of human B cell activating factor. I. Comparison of the plaque stimulating activity with thymocyte stimulating activity, J. Immunol. 123:2400.PubMedGoogle Scholar
  339. Wood, D. D., 1979c, Comparison of the plaque stimulating and thymocyte stimulating activities derived from human monocytes, Ann. N.Y. Acad. Sci. 332:491.PubMedCrossRefGoogle Scholar
  340. Wood, D. D., and Cameron, P. M., 1975, Studies on the mechanism of stimulation of the humoral response of murine spleen cultures by culture fluids from human moncytes, J. Immunol. 114:1094.PubMedGoogle Scholar
  341. Wood, D. D., and Cameron, P. M., 1976, Stimulation of the release of a B cell activating factor from human monocytes, Cell. Immunol. 21:133.PubMedCrossRefGoogle Scholar
  342. Wood, D. D., and Cameron, P. M., 1978, Relationship between bacterial endotoxin and human B cell activating factor, J. Immunol. 121:53.PubMedGoogle Scholar
  343. Wood, D. D., and Gaul, S. L., 1974, Enhancement of the humoral response of T cell depleted murine spleens by a factor derived from human monocytes in vitro, J. Immunol. 113:925.Google Scholar
  344. Wood, D. D., and Staruch, M.-J., 1980, Biochemical properties and cellular requirements of BAF, in: Biochemical Characterization of Lymphokines (A. L. De Week, F. Kristensen, and M. Landy, eds.), pp. 423–425, Academic Press, New York.Google Scholar
  345. Wood, D. D., Cameron, P. M., Poe, M. T., and Morris, C. A., 1976, Resolution of a factor which enhances the antibody response of T cell depleted murine splenocytes from other monocyte products, Cell. Immunol. 21:88.PubMedCrossRefGoogle Scholar
  346. Wood, D. D., Hamerman, D., Ihrie, E. J., and Papovitch, L., 1983a, Stimulation of synoviocyte glucosaminoglycan production by synoviocyte-derived interleukin-1, Fed. Proc. 42:1200.Google Scholar
  347. Wood, D. D., Ihrie, E. J., Dinarello, C. A., and Cohen, P. L., 1983b, Isolation of an interleukin-1-like factor from human joint effusions, Arthritis Rheum. 26:975.PubMedCrossRefGoogle Scholar
  348. Wood, D. D., Ihrie, E. J., and Hamerman, D., 1984, Production of interleukin-1 by human synovial tissue, submitted to J. Clin. Invest.Google Scholar
  349. Woolley, D. E., Harris, E. D., Jr., Mainardi, C. L., and Brinckerhoff, C. E., 1978, Collagenase immunolocalization in cultures of rheumatoid synovial cells, Science 200:773.PubMedCrossRefGoogle Scholar
  350. Wyler, D.-J., Oppenheim, J. J., and Koonty, L. C., 1979, Influence of malaria infection of the elaboration of soluble mediators by adherent mononuclear cells, Infect. Immun. 24:151.PubMedGoogle Scholar
  351. Yamamoto, Y., and Onoue, K., 1979, Functional activation of immune lymphocyte by antigenic stimulation in cell-mediated immunity. IV. Role of macrophage and its soluble factor in antigen-induced MIF production of immune T lymphocytes, J. Immunol. 122:924.Google Scholar
  352. Yamamoto, Y., Onoue, K., and Ohishi, M., 1977, Functional activation of immune lymphocytes by antigenic stimulation in cell-mediated immunity. III. A soluble factor released from LPS-stimulated peritoneal adherent cells effective in antigenic activation of sensitized lymphocytes, Cell. Immunol. 37:432.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • David D. Wood
    • 1
  1. 1.Department of ImmunologyAyerst Research LaboratoriesPrincetonUSA

Personalised recommendations